Autograd
1、深度学习的算法本质上是通过反向传播求导数,Pytorch的Autograd模块实现了此功能;在Tensor上的所有操作,Autograd都能为他们自动提供微分,避免手动计算导数的复杂过程。
2、autograd.Variable是Autograd中的核心类,它简单的封装了Tensor,并支持几乎所有Tensor操作;Tensor被封装为Variable之后,可以调用它的.backward()实现反向传播,自动计算所有的梯度。
3、Variable主要包含三个属性:
data:保存Variable所包含的Tensor;
grad:保存data对应的梯度,grad也是个Variable,而不是Tensor,它和data的形状一样;
grad_fn:指向一个Function对象,这个Function用来反向传播计算输入的梯度。
具体代码解析
- #_Author_:Monkey
- #!/usr/bin/env python
- #-*- coding:utf-8 -*-
- import torch as t
- from torch.autograd import Variable
- x = Variable(t.ones(2,2),requires_grad = True)
- print(x)
- ‘‘‘‘‘tensor([[1., 1.],
- [1., 1.]], requires_grad=True)‘‘‘
- y = x.sum()
- print(y)
- ‘‘‘‘‘tensor(4., grad_fn=<SumBackward0>)‘‘‘
- print(y.grad_fn) #指向一个Function对象,这个Function用来反向传播计算输入的梯度
- ‘‘‘‘‘<SumBackward0 object at 0x000002D4240AB860>‘‘‘
- y.backward()
- print(x.grad)
- ‘‘‘‘‘tensor([[1., 1.],
- [1., 1.]])‘‘‘
- y.backward()
- print(x.grad)
- ‘‘‘‘‘tensor([[2., 2.],
- [2., 2.]])‘‘‘
- y.backward()
- print( x.grad )
- ‘‘‘‘‘tensor([[3., 3.],
- [3., 3.]])‘‘‘
- ‘‘‘‘‘grad在反向传播过程中时累加的(accumulated),这意味着运行
- 反向传播,梯度都会累加之前的梯度,所以反向传播之前需要梯度清零‘‘‘
- print( x.grad.data.zero_() )
- ‘‘‘‘‘tensor([[0., 0.],
- [0., 0.]])‘‘‘
- y.backward()
- print( x.grad )
- ‘‘‘‘‘tensor([[1., 1.],
- [1., 1.]])‘‘‘
- m = Variable(t.ones(4,5))
- n = t.cos(m)
- print(m)
- print(n)
- ‘‘‘‘‘tensor([[1., 1., 1., 1., 1.],
- [1., 1., 1., 1., 1.],
- [1., 1., 1., 1., 1.],
- [1., 1., 1., 1., 1.]])
- tensor([[0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403]])‘‘‘
- m_tensor_cos = t.cos(m.data)
- print(m_tensor_cos)
- ‘‘‘‘‘ensor([[0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403]])‘‘‘
原文地址:https://www.cnblogs.com/monkeyT/p/9751405.html
时间: 2024-11-09 07:27:44