bzoj 2169 连边 —— DP+容斥

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2169

就和这篇博客说的一样:https://blog.csdn.net/WerKeyTom_FTD/article/details/70274470

注意每次是 /i 而不是 /(i!),因为 i-1 时也已经去了重,现在就是对于新加一条边的多种方式带来一种局面去重,从每一种局面看,新加的边可以是任意一条,所以 /i。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=1005,mod=10007;
int n,m,k,deg[xn];
ll f[xn][xn];
int rd()
{
  int ret=0,f=1; char ch=getchar();
  while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=0; ch=getchar();}
  while(ch>=‘0‘&&ch<=‘9‘)ret=(ret<<3)+(ret<<1)+ch-‘0‘,ch=getchar();
  return f?ret:-ret;
}
ll pw(ll a,int b)
{
  ll ret=1;
  for(;b;b>>=1,a=(a*a)%mod)
    if(b&1)ret=(ret*a)%mod;
  return ret;
}
ll calc(int x){return (ll)x*(x-1)/2;}
int main()
{
  n=rd(); m=rd(); k=rd(); int num=0;
  for(int i=1,x,y;i<=m;i++)x=rd(),y=rd(),deg[x]++,deg[y]++;
  for(int i=1;i<=n;i++)if(deg[i]&1)num++;
  f[0][num]=1;
  for(int i=1;i<=k;i++)
    for(int j=0;j<=n;j++)
      {
    f[i][j]=(f[i][j]+f[i-1][j]*((ll)j*(n-j)%mod)%mod)%mod;
    if(j>=2)f[i][j]=(f[i][j]+f[i-1][j-2]*calc(n-j+2)%mod)%mod;//+2!
    if(j<=n-2)f[i][j]=(f[i][j]+f[i-1][j+2]*calc(j+2)%mod)%mod;
    if(i>=2)f[i][j]=(f[i][j]-(f[i-2][j]*(calc(n)-i+2))%mod+mod)%mod;
    f[i][j]=(f[i][j]*pw(i,mod-2))%mod;//
      }
  printf("%lld\n",f[k][0]);
  return 0;
}

原文地址:https://www.cnblogs.com/Zinn/p/9756171.html

时间: 2024-10-18 12:53:53

bzoj 2169 连边 —— DP+容斥的相关文章

bzoj 3622 DP + 容斥

LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[i]大于b的组数. 不妨从整体去考虑,使用$f[n][j]$代表前n个中有j组$a[i]>b[i]$,很容易得到转移式$f[n][j]=f[n-1][j]+f[n-1][j-1]*(cnt[n]-(j-1))$,其中$cnt[i]$为比a[i]小的b[]个数 但是仔细思考该式子含义会发现,$f[n][j

【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那会有多少种方案使得每个人手中的糖的种类都与原来不同. 两个方案不同当且仅当,存在一个人,他手中的糖的种类在两个方案中不一样. Input 第一行,一个整数n 接下来n行,每行一个整数

codeforces 449D DP+容斥

Jzzhu and Numbers Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Status Appoint description:  System Crawler  (2014-07-20) Description Jzzhu have n non-negative integers a1, a2, ..., an. We will call a sequence o

[Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包的做法. 就是对于每一次询问,我们都做一次背包. 复杂度O(tot*s*log(di)) (使用二进制背包优化) 显然会T得起飞. 接下来,我们可以换一种角度来思考这个问题. 首先,我们可以假设没有每个物品的数量的限制,那么这样就会变成一个很简单的完全背包问题. 至于完全背包怎么写,我们在这里就不做

[BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案. 为了避免重复的方案被转移,所以我们以硬币种类为第一层循环,这样阶段性的增加硬币. 一定要注意这个第一层循环要是硬币种类,并且初始 f[0] = 1. f[0] = 1; for (int i = 1; i <= 4; ++i) { for (int j = B[i]; j <= MaxS; +

Codeforces 611C New Year and Domino DP+容斥

"#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容斥一下, 复杂度O(n^2+q) #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<cstdlib> #include<cmat

codeforces 342D Xenia and Dominoes(状压dp+容斥)

转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles very much. She is especially fond of the puzzles that consist of domino pieces. Look at the picture that shows one of such puzzles. A puzzle is a 3 ×

HDU 4632 Palindrome subsequence (区间dp 容斥定理)

Palindrome subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65535 K (Java/Others) Total Submission(s): 2610    Accepted Submission(s): 1050 Problem Description In mathematics, a subsequence is a sequence that can be derived

[BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 m 减去 Ai - 1 ,相当于将这一部分固定分给 xi,就转化为无限制的情况了. 如果有一些限制条件是 xi <= Ai 呢?直接来求就不行了,但是注意到这样的限制不超过 8 个,我们可以使用容斥原理来求. 考虑容斥:考虑哪些限制条件被违反了,也就是说,有哪些限制为 xi <= Ai 却是 xi