现任58到家技术委员会主席,高级技术总监,负责企业,支付,营销、客户关系等多个后端业务部门。本质,技术人一枚。互联网架构技术专家,“架构师之路”公众号作者。曾任百度高级工程师,58同城高级架构师,58同城技术委员会主席,58同城C2C技术部负责人。
内容介绍
1.大数据量时,数据库架构设计原则
2.数据库水平切分架构设计方向
3.用户中心,帖子中心,好友中心,订单中心水平切分架构实践
下面是58沈剑老师的演讲实录
大家好,我是58沈剑,架构师之路的小编,后端程序员一枚,平时比较喜欢写写文字。今天和大家分享,数据量很大的情况下,如何进行数据库架构设计(主要是水平切分)会举用户中心,帖子中心,订单中心的一些例子,希望大家有收获。
首先,介绍数据库架构设计中的一些基本概念,常见问题以及对应解决方案,为了便于读者理解,将以“用户中心”数据库为例,讲解数据库架构设计的常见玩法。
第一个概念是“单库”。
user-service:用户中心服务,对调用者提供友好的RPC接口,user-db:单库(就是一个库)进行数据存储。
第二个概念是“分组”。
什么是分组?分组架构是最常见的一主多从,主从同步,读写分离数据库架构
user-service:依旧是用户中心服务
user-db-M(master):主库,提供数据库写服务
user-db-S(slave):从库,提供数据库读服务
主和从构成的数据库集群称为“组”。分组解决的是“数据库读写高并发量高”问题。
第三个概念是“分片”。
分片架构是大伙常说的水平切分(sharding)数据库架构。
user-db1:水平切分成2份中的第一份,user-db2:水平切分成2份中的第二份,分片后,多个数据库实例也会构成一个数据库集群。一旦分片,就涉及分片算法。常见的水平切分算法有“范围法”和“哈希法”
范围法如上图:以用户中心的业务主键uid为划分依据,将数据水平切分到两个数据库实例上去。
哈希法如上图
user-db1:存储uid取模得1的uid数据,user-db2:存储uid取模得0的uid数据。这两种分片算法,在互联网都有使用,其中哈希法使用较为广泛。
分片解决的是“数据库数据量大”问题,也就是今天数据库架构分享的主题。
场景一、用户中心
第一个案例,先以“用户中心”为例,介绍“单KEY”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践。
用户中心是一个非常常见的业务,主要提供用户注册、登录、信息查询与修改的服务。其核心元数据为:
User(uid, login_name, passwd, sex, age, nickname, …); uid为用户ID,主键。login_name, passwd, sex, age, nickname, …等用户属性。数据库设计上,一般来说在业务初期,单库单表就能够搞定这个需求。
当数据量越来越大时,需要多用户中心进行水平切分,上文提到了“范围法”与“哈希法”。使用uid来进行水平切分之后,整个用户中心的业务访问会遇到什么问题呢?对于uid属性上的查询可以直接路由到库,对于非uid属性上的查询,例如login_name属性上的查询,就悲剧了。
例如,按照uid分为3个库,使用login_name=shenjian来查询,就不知道数据分布在哪个库上了。一种方法,是遍历所有库,当分库数量多起来,性能会显著降低。
常见的解决方案,有这么四种方法:
第一种方法,索引表法
思路:uid能直接定位到库,login_name不能直接定位到库,如果通过login_name能查询到uid,问题解决。
细致的步骤为:
(1)建立一个索引表记录login_name->uid的映射关系;
(2)用login_name来访问时,先通过索引表查询到uid,再定位相应的库;
(3)索引表属性较少,只有两列,可以容纳非常多数据,一般不需要分库
(4)如果数据量过大,可以通过login_name来分库;
潜在的不足是:多一次数据库查询,性能会有所下降。
第二种方法,缓存映射法
思路:访问索引表性能较低,把映射关系放在缓存里性能更佳
细致的步骤为:
(1)login_name查询先到cache中查询uid,再根据uid定位数据库;
(2)假设cache miss,采用扫全库法获取login_name对应的uid,放入cache;
(3)login_name到uid的映射关系不会变化,映射关系一旦放入缓存,不会更改,无需淘汰,缓存命中率超高;
(4)如果数据量过大,可以通过login_name进行cache水平切分;
潜在的不足是:多了一次cache查询。
第三种方法,login_name生成uid法
思路:不进行额外查询,能由login_name直接生成uid么?
细致的步骤为:
(1)在用户注册时,设计函数login_name生成uid,uid=f(login_name),按uid分库插入数据;
(2)用login_name来访问时,先通过函数计算出uid,即uid=f(login_name)再来一遍,由uid路由到对应库;
潜在的不足是:该函数设计需要非常讲究技巧,有uid生成冲突风险
第四种方法,基因法(这个方法网上没有,在“架构是之路”公众号里有说明过)
思路:不用login_name生成uid,可以从login_name抽取“基因”,融入uid中。
方法图示如下(这个图很重要):
假设分8库,采用uid%8路由。潜台词是,uid的最后3个bit决定这条数据落在哪个库上,这3个bit就是所谓的“基因”。
细致的步骤为:
(1)在用户注册时,设计函数login_name生成3bit基因,login_name_gene=f(login_name),如上图粉色部分;【画外音,一定要步骤和图对着看】
(2)同时,生成61bit的全局唯一id,作为用户的标识,如上图绿色部分;
(3)接着把3bit的login_name_gene也作为uid的一部分,如上图屎黄色部分;
(4)生成64bit的uid,由id和login_name_gene拼装而成,并按照uid分库插入数据;
(5)用login_name来访问时,先通过函数由login_name再次复原3bit基因,login_name_gene=f(login_name),通过login_name_gene%8直接定位到库。如此这般,uid可以直接定位到库,login_name可以生成基因,也可以定位到库。
好,用户中心是第一个场景。
场景二、帖子中心
第二个场景,将以“帖子中心”为例,介绍“1对多”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践。用户中心,是一个但key场景,而帖子中心,是一个1对多的场景。
什么是1对多场景?
一个用户可以发多条微博,一条微博只有一个发送者;一个uid对应多个msg_id,一个msg_id只对应一个uid;这些是1对多的关系。
一个用户可以发布多个帖子,一个帖子只对应一个发布者。帖子中心,是一个提供帖子发布,修改,删除,查看,搜索的服务。
读操作:通过tid查询帖子实体,单行查询;通过uid查询用户发布过的帖子,列表查询。帖子检索,例如通过时间、标题、内容搜索符合条件的帖子。
写操作:发布(insert)帖子;修改(update)帖子;删除(delete)帖子。
在数据量较大,并发量较大的时候,通常通过元数据与索引数据分离的架构来满足实时查询,以及帖子检索的入球。
架构中的几个关键点
(1)tiezi-center服务;
(2)tiezi-db:提供元数据存储;
(3)tiezi-search搜索服务;
(4)tiezi-index:提供索引数据存储;
(5)MQ:tiezi-center与tiezi-search通讯媒介,一般不直接使用RPC调用,而是通过MQ对两个子系统解耦;
【画外音:12345对着图细看一下】
如上图所示:tid和uid上的查询需求,可以由tiezi-center从元数据读取并返回,其他检索需求,可以由tiezi-search从索引数据检索并返回,tiezi-search可以使用Solr,ES等开源架构实现,这一块不是今天的重点,今天将重点描述帖子中心元数据这一块的水平切分设计。在业务初期,单库就能满足元数据存储要求。
在相关字段上建立索引,就能满足相关业务需求,帖子记录查询,通过tid查询,约占读请求量的90% 。select * from t_tiezi where tid=$tid 帖子列表查询,通过uid查询其发布的所有帖子,约占读请求量的10% ,select * from t_tiezi where uid=$uid。当数据量越来越大时,需要对帖子数据的存储进行线性扩展,既然是帖子中心,并且帖子记录查询量占了总请求的90%,很容易想到通过tid字段取模来进行水平切分。
这个方法简单直接。但缺点是:一个用户发布的所有帖子可能会落到不同的库上,10%的请求通过uid来查询会比较麻烦。
一个uid查询帖子列表,需要遍历所有库。有没有一种切分方法,确保同一个用户发布的所有帖子都落在同一个库上,而在查询一个用户发布的所有帖子时,不需要去遍历所有的库呢?
使用uid来分库可以解决这个问题。
新增一个索引库:t_mapping(tid, uid)
(1)这个库只有两列,可以承载很多数据;
(2)即使数据量过大,索引库可以利用tid水平切分;
(3)这类kv形式的索引结构,可以很好的利用cache优化查询性能;
(4)一旦帖子发布,tid和uid的映射关系就不会发生变化,cache的命中率会非常高;
如此这般,可以保证一个uid的所有tid都在一个库上,使用tid查询时,先通过mapping库查询到uid,再定位库,这就是帖子中心场景,使用uid来进行分库的好处。
mapping表法,和用户中心的索引表很像,那是不是也能使用“基因法”呢?答案是肯定的,如果login_name生成基因打入uid一样,可以在uid上取基因,打入tid。
如上图所示,假设分为16库,用uid%16分库,假设uid=666的用户发布了一条帖子
(1)使用uid%16分库,决定这行数据要插入到哪个库中;
(2)%16,即分库基因是uid的最后4个bit,即1010;
(3)在生成tid时,先使用一种分布式ID生成算法生成前60bit(上图中绿色部分);
(4)将分库基因加入到tid的最后4个bit(上图中粉色部分),拼装成最终的64bit帖子tid(上图中蓝色部分);
【画外音,对照上图看1234】
通过这种方法保证,同一个用户发布的所有帖子的tid,都落在同一个库上,tid的最后4个bit都相同
于是,通过uid%16能够定位到库,通过tid%16也能定位到库,基因法很有意思,网上几乎没有文章介绍,更详细的基因法介绍,可以扫下列二维码查阅。
没错,就是架构师之路,基因法,哈哈。
场景三、好友中心
第三个场景,是好友中心,好友中心,是一个多对多的场景。
什么是多对多关系?
所谓的“多对多”,来自数据库设计中的“实体-关系”ER模型,用来描述实体之间的关联关系。一个学生可以选修多个课程,一个课程可以被多个学生选修,这里学生与课程时间的关系,就是多对多关系。
好友中心是一个典型的多对多业务,一个用户可以关注多个好友,也可以被多个好友关注。
friend-service:好友中心服务,对调用者提供友好的RPC接口,guanzhu表,用户记录uid所有关注用户guanzhu_uid。fensi表,用来记录uid所有粉丝用户fensi_uid。一条好友关系的产生,会产生两条记录,一条关注记录,一条粉丝记录。数据量大时,如何进行水平切分呢?关注表,使用uid分库,存储的是关注的人。粉丝表,也使用uid分库,存储的是粉丝。由于一条好友关系的产生,会产生两条记录,分库的时候要注意,需要保证数据的一致性,关注库,粉丝库,可能存储在不同的数据实例上,数据的插入难以保证原子性。
这是一个很难的“分布式事务”的问题。具体的数据冗余方式,常见的有这么两种:
第一种,同步冗余。
顾名思义,由好友中心服务同步写冗余数据。如上图1-4流程
(1)业务方调用服务,新增好友关系数据;
(2)服务先插入T1数据;
(3)服务再插入T2数据;
(4)服务返回业务方新增数据成功;
第二种,异步冗余
服务层异步发出一个消息,通过消息总线发送给一个专门的数据复制服务来写入冗余数据。如上图1-6流程
(1)业务方调用服务,新增数据;
(2)服务先插入T1数据;
(3)服务向消息总线发送一个异步消息(发出即可,异步不用等返回,通常很快就能完成);
(4)服务返回业务方新增数据成功;
(5)消息总线将消息投递给数据同步中心;
(6)数据同步中心插入T2数据;
这是两种很常见的冗余数据的方式。数据的一致性如何保证?如果插入T1数据,T2数据插入失败呢?需要有一个校验机制。这里多提一句,为了保证一致性,架构设计的思路有两种:
(1)分布式事务,保证强一致;
(2)新增异步校验机制;
第一个方向,很难,是业界没有解决的难题。或者说,即使有理论上可行的方案,算法效率也非常非常低,不适合互联网高并发场景。此时的架构优化方向,并不是完全保证数据的一致,而是尽早的发现不一致,并修复不一致。校验机制,又有两种常见的方法。
一种是异步扫描校验
线下启动一个离线的扫描工具,不停的比对正表T1和反表T2,如果发现数据不一致,就进行补偿修复,这个方法是最容易想到的。
一种是实时消息扫描校验
(1)写入正表T1;
(2)第一步成功后,发送消息msg1;
(3)写入反表T2;
(4)第二步成功后,发送消息msg2;
正常情况下,msg1和msg2的接收时间应该在3s以内,如果检测服务在收到msg1后没有收到msg2,就尝试检测数据的一致性,不一致时进行补偿修复。第一个方案比较容易,但时效性差,第二个方案比较复杂,但时效好。这里再强调一下,分布式事务一致性,是我被询问最多的问题。 无数网友在公众号下方留言问,分布式事务一致性的问题。
这里再强调一下方法论。高吞吐互联网业务,要想完全保证事务一致性很难,常见的实践是最终一致性 。最终一致性的常见实践是,尽快找到不一致,并修复数据。
场景四、订单中心
第四个场景,也是最后一个场景,是最复杂的,订单中心的分库。这是一个多key的场景。
Order(oid, buyer_uid, seller_uid, time, money, detail…);为啥叫多key呢
(1)oid为订单ID,主键;
(2)buyer_uid为买家uid;
(3)seller_uid为卖家uid;
看到了吧,访问模式有多个。随着订单量的越来越大,数据库需要进行水平切分,由于存在多个key上的查询需求,用哪个字段进行切分,成了需要解决的关键技术问题。
如果用oid来切分,buyer_uid和seller_uid上的查询则需要遍历多库,如果用buyer_uid或seller_uid来切分,其他属性上的查询则需要遍历多库。
思路为,多个维度的查询较为复杂,对于复杂系统设计,可以逐步简化。假设没有seller_uid,订单中心,假设没有seller_uid上的查询需求,而只有oid和buyer_uid上的查询需求,应该怎么分库?
没错,没有seller_uid,就蜕化为一个“1对多”的业务场景,对于“1对多”的业务,水平切分应该使用“基因法”。
再次回顾一下,什么是分库基因?通过buyer_uid分库,假设分为16个库,采用buyer_uid%16的方式来进行数据库路由,所谓的模16,其本质是buyer_uid的最后4个bit决定这行数据落在哪个库上,这4个bit,就是分库基因。在订单数据oid生成时,oid末端加入分库基因,让同一个buyer_uid下的所有订单都含有相同基因,落在同一个分库上。
再次假设,这个场景如果没有订单ID的oid呢?假设没有oid上的查询需求,而只有buyer_uid和seller_uid上的查询需求,就蜕化为一个“多对多”的业务场景。对于“多对多”的业务,就和好友中心一样,水平切分应该使用“数据冗余法”(上面提到的关注库,粉丝库)。
订单中心,该怎么弄呢?任何复杂难题的解决,都是一个化繁为简,逐步击破的过程。对于像订单中心一样复杂的“多key”类业务,在数据量较大,需要对数据库进行水平切分时:
(1)使用“基因法”,解决“1对多”分库需求:使用buyer_uid分库,在oid中加入分库基因,同时满足oid和buyer_uid上的查询需求;
(2)使用“数据冗余法”,解决“多对多”分库需求:使用buyer_uid和seller_uid来分别分库,冗余数据,满足buyer_uid和seller_uid上的查询需求;
(3)订单中心,oid/buyer_uid/seller_uid同时存在,可以使用上述两种方案的综合方案,来解决“多key”业务的数据库水平切分难题;
今天的分享差不多就到这里,最后做一个小结
水平切分方式;
范围法;
哈希法;
用户侧,“建立非uid属性到uid的映射关系”最佳实践。索引表法:数据库中记录login_name->uid的映射关系。缓存映射法:缓存中记录login_name->uid的映射关系。生成法:login_name生成uid;基因法:login_name基因融入uid;
帖子侧,帖子服务,元数据满足uid和tid的查询需求。搜索服务,索引数据满足复杂搜索寻求。uid切分法,按照uid分库,同一个用户发布的帖子落在同一个库上,需要通过索引表或者缓存来记录tid与uid的映射关系,通过tid来查询时,先查到uid,再通过uid定位库。基因法,按照uid分库,在生成tid里加入uid上的分库基因,保证通过uid和tid都能直接定位到库。
好友侧,数据冗余是一个常见的多对多业务数据水平切分实践。冗余数据的常见方案有两种:服务同步冗余,服务异步冗余(通过MQ发消息)。数据冗余会带来一致性问题,高吞吐互联网业务,要想完全保证事务一致性很难,常见的实践是最终一致性。最终一致性的常见实践是,尽快找到不一致,并修复数据,常见方案有:线下扫描法,实时消息法。
订单侧,任何复杂难题的解决,都是一个化繁为简,逐步击破的过程。将“多key”类业务,分解为“1对多”类业务和“多对多”类业务分别解决。使用“基因法”,解决“1对多”分库需求:使用buyer_uid分库,在oid中加入分库基因,同时满足oid和buyer_uid上的查询需求。使用“数据冗余法”,解决“多对多”分库需求:使用buyer_uid和seller_uid来分别分库,冗余数据,满足buyer_uid和seller_uid上的查询需求。oid/buyer_uid/seller_uid同时存在,可以使用上述两种方案的综合方案,来解决“多key”业务的数据库水平切分难题。
最后再多说一句,任何脱离业务的架构设计都是耍流氓,共勉。
今天,仅仅只是展开描述了“水平切分”这一个话题,在数据库架构设计过程中,除了水平切分,至少还会遇到这样一些问题:
(1)可用性:不管是主库实例,还是从库实例,如果数据库实例挂了,如何不影响数据的读和写;
(2)读性能:互联网业务大多是读多写少的业务,如果提升数据库的读性能是架构设计中必须考虑的问题;(3)一致性:数据一旦冗余,就可能出现一致性问题,如何解决主库与从库之间的不一致,如何解决数据库与缓存之间的不一致,也是需要重点设计的;
(4)扩展性:如何在不停服务的情况下扩充数据表的属性,实施数据迁移,实施存储引擎的切换,架构设计上都是十分有讲究的;
(5)分布式SQL语句:单库情况下,所有SQL语句的执行都没问题问题,一旦实施了水平切分,如何实现SQL的集函数,分页,非patition key上的查询都成了大问题;
上面这些问题,由于时间的关系,今天不能再展开。要想了解细节,你懂的,扫描上面的二维码,微信关注“架构师之路”,有你想要的答案。对于“数据库水平切分”,希望大家有收获,希望下次还有机会在51CTO群里分享。
以下问题是来自51CTO开发者社群小伙伴们的提问和分享
Q:Java-风-阿里:老师分布式事务玩过TCC吗?
A:58沈剑老师:高并发的场景,基本不玩分布式事务,1秒几十万次的并发,分布式事务扛不住的。
Q:后端-陈医生-北京:说的基因法和数据冗余法,不是非常懂,尤其订单那块的基因法。请教一个对于分库算法的问题,在分库算法都有什么?
A:58沈剑老师:今天介绍了,范围法,hash法。hash法,最常见的是取模,网上讨论最多的是一致性hash。强烈建议前者 ,取模就行。
阅读更多
原文地址:https://www.cnblogs.com/java6655/p/9823253.html