1.为什么要让运行时Jar可以从yarn端访问
spark2以后,原有lib目录下的大JAR包被分散成多个小JAR包,原来的spark-assembly-*.jar已经不存在
每一次我们运行的时候,如果没有指定
spark.yarn.archive or spark.yarn.jars
Spark将在安装路径下的Jar目录,将其所有的Jar包打包然后将其上传到分布式缓存(官网上的原话是:To make Spark runtime jars accessible from YARN side, you can specify spark.yarn.archive or spark.yarn.jars. For details please refer to Spark Properties. If neither spark.yarn.archive nor spark.yarn.jars is specified, Spark will create a zip file with all jars under $SPARK_HOME/jars and upload it to the distributed cache.)
这里以简单地写了一个wordcount.scala为例,将其打包然后部署到Spark集群上运行
object WordCount { def main(args: Array[String]): Unit = { if (args.length != 2) println("AppName + FilePath") val conf = new SparkConf() // .setMaster("local[4]") .setAppName(args(0)) val sc = new SparkContext(conf) val lines = sc.textFile(args(1)) val flatRDD = lines.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _).collect.foreach(println) } }
观察日志:
yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
大致的意思说找不到spark.yarn.jars nor spark.yarn.archive,回到spark安装目录上传运行时的Jar包
观察一下SparkUI,这里以collect为例子
点进去。观察他的Scheduler Delay
可以看到Scheduler Delay=557-457=100
2.调优办法
- 首先将Spark安装路径下的所有jar包上传到HDFS上,我是上传到了
/system/sparkJar/jars
- 接着在spark的conf目录下的
spark-defaults.conf
末尾添加上这一行spark.yarn.jars hdfs://172.17.11.85:9000/system/sparkJar/jars/*.jar
3.调优之后与调优之前的对比
- 调优之后日志变化:
可以看到它已经不用上传Spark运行时Jar包到分布式缓存中了
- 看看UI
还是相同的界面:
还是看Scheduler Delay
发现Scheduler Delay=313-263=50
与调优之前时间整整缩短了一半,Scheduler Delay从100缩短到了50
原文地址:https://www.cnblogs.com/itboys/p/10041541.html