基于Hadoop大数据分析应用场景与实战

一、Hadoop的应用业务分析

大数据是不能用传统的计算技术处理的大型数据集的集合。它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域。

目前主流的三大分布式计算系统分别为:Hadoop、Spark和Strom:

Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。

Spark采用了内存计算。从多迭代批处理出发,允许将数据载入内存作反复查询,此外还融合数据仓库,流处理和图形计算等多种计算范式。Spark构建在HDFS上,能与Hadoop很好的结合。它的RDD是一个很大的特点。

Storm用于处理高速、大型数据流的分布式实时计算系统。为Hadoop添加了可靠的实时数据处理功能

Hadoop是使用Java编写,允许分布在集群,使用简单的编程模型的计算机大型数据集处理的Apache的开源框架。 Hadoop框架应用工程提供跨计算机集群的分布式存储和计算的环境。 Hadoop是专为从单一服务器到上千台机器扩展,每个机器都可以提供本地计算和存储。

Hadoop适用于海量数据、离线数据和负责数据,应用场景如下:

场景1:数据分析,如京东海量日志分析,京东商品推荐,京东用户行为分析

场景2:离线计算,(异构计算+分布式计算)天文计算

场景3:海量数据存储,如京东的存储集群

基于京麦业务三个实用场景

京麦用户分析

京麦流量分析

京麦订单分析

都属于离线数据,决定采用Hadoop作为京麦数据类产品的数据计算引擎,后续会根据业务的发展,会增加Storm等流式计算的计算引擎,下图是京麦的北斗系统架构图:

(图一)京东北斗系统

二、浅谈Hadoop的基本原理

Hadoop分布式处理框架核心设计

HDFS :(Hadoop Distributed File System)分布式文件系统

MapReduce: 是一种计算模型及软件架构

2.1 HDFS

HDFS(Hadoop File System),是Hadoop的分布式文件存储系统。

将大文件分解为多个Block,每个Block保存多个副本。提供容错机制,副本丢失或者宕机时自动恢复。默认每个Block保存3个副本,64M为1个Block。将Block按照key-value映射到内存当中。

(图二)数据写入HDFS

(图三)HDFS读取数据

2.2 MapReduce

MapReduce是一个编程模型,封装了并行计算、容错、数据分布、负载均衡等细节问题。MapReduce实现最开始是映射map,将操作映射到集合中的每个文档,然后按照产生的键进行分组,并将产生的键值组成列表放到对应的键中。化简(reduce)则是把列表中的值化简成一个单值,这个值被返回,然后再次进行键分组,直到每个键的列表只有一个值为止。这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间。但如果你要我再通俗点介绍,那么,说白了,Mapreduce的原理就是一个分治算法。

算法:

MapReduce计划分三个阶段执行,即映射阶段,shuffle阶段,并减少阶段。

映射阶段:映射或映射器的工作是处理输入数据。一般输入数据是在文件或目录的形式,并且被存储在Hadoop的文件系统(HDFS)。输入文件被传递到由线映射器功能线路。映射器处理该数据,并创建数据的若干小块。

减少阶段:这个阶段是:Shuffle阶段和Reduce阶段的组合。减速器的工作是处理该来自映射器中的数据。处理之后,它产生一组新的输出,这将被存储在HDFS。

(图四)MapReduce

2.3 HIVE

hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,这套SQL 简称HQL。使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据。而mapreduce开发人员可以把己写的mapper 和reducer 作为插件来支持Hive 做更复杂的数据分析。

(图五)HIVE体系架构图

由上图可知,hadoop和mapreduce是hive架构的根基。Hive架构包括如下组件:CLI(command line interface)、JDBC/ODBC、Thrift Server、WEB GUI、metastore和Driver(Complier、Optimizer和Executor)。

三、Hadoop走过来的那些坑

进行HIVE操作的时候,HQL写的不当,容易造成数据倾斜,大致分为这么几类:空值数据倾斜、不同数据类型关联产生数据倾斜和Join的数据偏斜。只有理解了Hadoop的原理,熟练使用HQL,就会避免数据倾斜,提高查询效率。
欢迎工作一到五年的Java工程师朋友们加入Java架构开发: 855835163
群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!

原文地址:http://blog.51cto.com/14028890/2337131

时间: 2024-12-14 05:45:56

基于Hadoop大数据分析应用场景与实战的相关文章

Hadoop大数据分析应用场景

J 为了满足日益增长的业务变化,京东的京麦团队在京东大数据平台的基础上,采用了hadoop等热门的开源大数据计算引擎,打造了一款为京东运营和产品提供决策性的数据类产品-北斗平台. 一.Hadoop的应用业务分析 大数据是不能用传统的计算技术处理的大型数据集的集合.它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域. 目前主流的三大分布式计算系统分别为:Hadoop.Spark和Strom: Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统.可以轻松地集成结构化.半结构化甚至

【Hadoop大数据分析与挖掘实战】(一)----------P19~22

这是一本书的名字,叫做[Hadoop大数据分析与挖掘实战],我从2017.1开始学习 软件版本为Centos6.4 64bit,VMware,Hadoop2.6.0,JDK1.7. 但是这本书的出版时间为2016.1,待到我2017.1使用时,一部分内容已经发生了翻天覆地的变化. 于是我开始写这么一个博客,把这些记录下来. 我使用的软件版本为: 软件 版本 操作系统 CentOS 7 64bit-1611 虚拟机 VMware 12.5.2 Hadoop 2.7.3 JDK 1.8.0 本人大二

【Hadoop大数据分析与挖掘实战】(三)----------P23~25

6.安装Hadoop 1)在Hadoop网站下,下载稳定版的并且已经编译好的二进制包,并解压缩. [[email protected] ~]$ wget http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz [[email protected] ~]$ tar -zxvf hadoop-2.7.3.tar.gz ~/opt [[email protected] ~]$ ~/opt/hado

基于Hadoop的数据分析综合管理平台之Hadoop、HBase完全分布式集群搭建

能够将热爱的技术应用于实际生活生产中,是做技术人员向往和乐之不疲的事. 现将前期手里面的一个项目做一个大致的总结,与大家一起分享.交流.进步.项目现在正在线上运行,项目名--基于Hadoop的数据分析综合管理平台. 项目流程整体比较清晰,爬取数据(txt文本)-->数据清洗-->文本模型训练-->文本分类-->热点话题发现-->报表"实时"展示,使用到的技术也是当今互联网公司常用的技术:Hadoop.Mahout.HBase.Spring Data Had

大数据分析挖掘全流程实战视频教程:电商市场与销售趋势预测

大数据分析挖掘全流程实战视频教程:电商市场与销售趋势预测资源下载:https://pan.baidu.com/s/1VPydETNHqhDDcJ1Lpko1AA 提取码:o9mk 课程特色:特色一:一套课程,搞定企业级数据分析与挖掘全栈技术特色二:基于Linux+Windows两套系统手把手教你搭建企业数据分析/挖掘开发环境,带你从0~1特色三:电商企业经典数据分析与挖掘项目全程贯穿,教你从1~100 课程目标:1.掌握预测分析的理论基础,一些数据分析挖掘软件的使用技巧2.通过掌握的分析技术及软

hadoop大数据分析与挖掘实战(读书笔记1)

第一章节是从一个餐厅的角度出发,引出来许许多多的相关概念. 第一个概念就是什么是数据挖掘,这个简单,望文生义就好了.它的名字本身就诠释了它的内涵. 基本任务还是得记一下: 1分类与预测.(有点像量化,股票交易) 2聚类分析() 3关联规则() 4时序模式() 5偏差检测() 关于定义挖掘目标,就是什么菜品推荐,门店开在哪,这些问题.可以不多说. 关于数据取样,没啥好说的. 然后重点在后面, 数据质量分析:有缺失值怎么办?(就是统计一下缺失率什么的,然后删掉或者补值呗) 有异常值怎么办?(识别出来

Hadoop大数据零基础高端实战培训视频

<Hadoop大数据零基础高端实战培训系列配文本挖掘项目(七大亮点.十大目标)> 课程讲师:迪伦 课程分类:大数据 适合人群:初级 课时数量: 300课时 用到技术:部署Hadoop集群 涉及项目:京东商城.百度.阿里巴巴 咨询QQ:779591710 下载地址: 链接:http://pan.baidu.com/share/link?shareid=3299239734&uk=3289559542 密码:8tkb 第一阶段:Hadoop基础篇(50课时) - 千里之行,始于足下(赠送课

Hadoop实战视频教程完整版 完整的Hadoop大数据视频教程

分享一套迪伦老师的完整的Hadoop实战视频教程,教程从学习Hadoop需要的数据库.Java和Linux基础讲起,非常适合零基础的学员,课程最后结合了实战项目演练,理论结合实战,深入浅出,绝对是当前最为完整.实战的Hadoop教程. <Hadoop大数据零基础高端实战培训系列配文本挖掘项目(七大亮点.十大目标)> 课程讲师:迪伦 课程分类:大数据 适合人群:初级 课时数量:230课时 用到技术:部署Hadoop集群 涉及项目:京东商城.百度.阿里巴巴 咨询QQ:1337192913(小公子)

基于Hadoop离线大数据分析平台项目实战

基于Hadoop离线大数据分析平台项目实战  课程学习入口:http://www.xuetuwuyou.com/course/184 课程出自学途无忧网:http://www.xuetuwuyou.com 课程简介: 某购物电商网站数据分析平台,分为收集数据.数据分析和数据展示三大层面.其中数据分析主要依据大数据Hadoop生态系统常用组件进行处理,此项目真实的展现了大数据在企业中实际应用. 课程内容 (1)文件收集框架 Flume ①Flume 设计架构.原理(三大组件) ②Flume 初步使