Dynamic Programming——Runtime Types in Reflection

Reflection provides classes, such as Type and MethodInfo, to represent types, members, parameters, and other code entities. However, when you use reflection you don‘t work directly with these classes, most of which are abstract . Instead, you work with types provided by the common language runtime (CLR).

For example, when you use the C# typeof operator to obtain a Type object, the object is really a RuntimeType. RuntimeType derives from Type, and provides implementations of all the abstract methods.

These runtime classes are internal. They are not documented separately from their base classes, because their behavior is described by the base class documentation.

时间: 2024-11-02 14:48:47

Dynamic Programming——Runtime Types in Reflection的相关文章

About Dynamic Programming

Main Point: Dynamic Programming = Divide + Remember + Guess 1. Divide the key is to find the subproblem 2. Remember use a data structure to write down what has been done 3. Guess when don't know what to do, just guess what next step can be Problems:

Speeding Up The Traveling Salesman Using Dynamic Programming

转自:https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd Using dynamic programming to speed up the traveling salesman problem! A large part of what makes computer science hard is that it can be hard to kn

Dynamic Programming

We began our study of algorithmic techniques with greedy algorithms, which in some sense form the most natural approach to algorithm design. Faced with a new computational problem, we've seen that it's not hard to propose multiple possible greedy alg

Dynamic Programming | Set 3 (Longest Increasing Subsequence)

在 Dynamic Programming | Set 1 (Overlapping Subproblems Property) 和 Dynamic Programming | Set 2 (Optimal Substructure Property) 中我们已经讨论了重叠子问题和最优子结构性质,现在我们来看一个可以使用动态规划来解决的问题:最长上升子序列(Longest Increasing Subsequence(LIS)). 最长上升子序列问题,致力于在一个给定的序列中找到一个最长的子序列

Dynamic Programming | Set 4 (Longest Common Subsequence)

首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", "bdf", "aeg", '"acefg"等都是"abcdefg"的子序列.因此,一个长度为n的序列拥有2^n中可能的子序列(序列中的每一个元素只有选或者不选两种可能,因此是2^n). Example: LCS for inp

HDU 4972 A simple dynamic programming problem(推理)

HDU 4972 A simple dynamic programming problem 题目链接 推理,会发现只有前一个和当前一个分数为(1, 2)或(2, 1)的时候,会有两种加分方法,其他情况最多就一种情况,所以只要统计(1, 2),(2, 1)的个数,最后判断分差是否为0,如果不为0,那么可能是正或负,那就是两倍 代码: #include <cstdio> #include <cstring> const int N = 100005; int t, n, a[N]; i

hdu 4972 A simple dynamic programming problem(高效)

题目链接:hdu 4972 A simple dynamic programming problem 题目大意:两支球队进行篮球比赛,每进一次球后更新比分牌,比分牌的计数方法是记录两队比分差的绝对值,每次进球的分可能是1,2,3分.给定比赛中的计分情况,问说最后比分有多少种情况. 解题思路:分类讨论: 相邻计分为1-2或者2-1的时候,会对应有两种的的分情况 相邻计分之差大于3或者说相等并且不等于1的话,为非法输入 其他情况下,不会造成新的比分情况产生 对于最后一次比分差为0的情况,就没有谁赢谁

2017 UESTC Training for Dynamic Programming

2017 UESTC Training for Dynamic Programming A    思维, 或 dp, 很有意思 方法1: 构造法:蛇形安排赛程表算法复杂度:O(N^2)将1-N排成两竖列,每一轮同一行的为对手保持1的位置不变,其他位置按顺(逆)时方向依次旋转1    6          1    2          1    3          1    4          1    5      2    5          3    6          4   

动态规划 Dynamic Programming

March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: 自由转载-非商用-非衍生-保持署名|Creative Commons BY-NC-ND 3.0 ,转载请注明作者及出处. 前言 本文翻译自TopCoder上的一篇文章: Dynamic Programming: From novice to advanced ,并非严格逐字逐句翻译,其中加入了自己的