Leftmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12947 Accepted Submission(s): 4953
Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2 3 4
Sample Output
2 2 Hint In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2. In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
Author
Ignatius.L
一看题上的 数值范围 就知道一般的数值类型没法表示 考虑到__int64
又因为n^n数值太大 考虑用指数表示法
则有n^n=a*10^x;
等号两边对10取对数得 n*log10n=lga+x;
则lga=(n*lgn-x)
x可以通过对n*lgn向下取整求得
则有lga=(n*lgn-[n*lgn])
所以有以下代码:
#include<stdio.h>
#include<math.h>
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
__int64 n,s;
double m;
scanf("%I64d",&n);
m=n*log10(n+0.0);
m-=(__int64)m;
s=(__int64)pow(10,m);
printf("%I64d\n",s);
}
return 0;
}
杭电 1060