SQL Server表分区【转】

转自:http://www.cnblogs.com/knowledgesea/p/3696912.html

SQL Server表分区

什么是表分区

一般情况下,我们建立数据库表时,表数据都存放在一个文件里。

但是如果是分区表的话,表数据就会按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在不同的磁盘下由多个cpu进行处理。这样文件的大小随着拆分而减小,还得到硬件系统的加强,自然对我们操作数据是大大有利的。

所以大数据量的数据表,对分区的需要还是必要的,因为它可以提高select效率,还可以对历史数据经行区分存档等。但是数据量少的数据就不要凑这个热闹啦,因为表分区会对数据库产生不必要的开销,除啦性能还会增加实现对象的管理费用和复杂性。

跟着做,分区如此简单

先跟着做一个分区表(分为11个分区),去除神秘的面纱,然后咱们再逐一击破各个要点要害。

分区是要把一个表数据拆分为若干子集合,也就是把把一个数据文件拆分到多个数据文件中,然而这些文件的存放可以依托一个文件组或这多个文件组,由于多个文件组可以提高数据库的访问并发量,还可以把不同的分区配置到不同的磁盘中提高效率,所以创建时建议分区跟文件组个数相同。

1.创建文件组

可以点击数据库属性在文件组里面添加

T-sql语法:

alter database <数据库名> add filegroup <文件组名>

---创建数据库文件组
alter database testSplit add filegroup ByIdGroup1
alter database testSplit add filegroup ByIdGroup2
alter database testSplit add filegroup ByIdGroup3
alter database testSplit add filegroup ByIdGroup4
alter database testSplit add filegroup ByIdGroup5
alter database testSplit add filegroup ByIdGroup6
alter database testSplit add filegroup ByIdGroup7
alter database testSplit add filegroup ByIdGroup8
alter database testSplit add filegroup ByIdGroup9
alter database testSplit add filegroup ByIdGroup10

2.创建数据文件到文件组里面

可以点击数据库属性在文件里面添加

T-sql语法:

alter database <数据库名称> add file <数据标识> to filegroup <文件组名称>

--<数据标识> (name:文件名,fliename:物理路径文件名,size:文件初始大小kb/mb/gb/tb,filegrowth:文件自动增量kb/mb/gb/tb/%,maxsize:文件可以增加到的最大大小kb/mb/gb/tb/unlimited)

alter database testSplit add file
(name=N‘ById1‘,filename=N‘J:\Work\数据库\data\ById1.ndf‘,size=5Mb,filegrowth=5mb)
to filegroup ByIdGroup1
alter database testSplit add file
(name=N‘ById2‘,filename=N‘J:\Work\数据库\data\ById2.ndf‘,size=5Mb,filegrowth=5mb)
to filegroup ByIdGroup2
alter database testSplit add file
(name=N‘ById3‘,filename=N‘J:\Work\数据库\data\ById3.ndf‘,size=5Mb,filegrowth=5mb)
to filegroup ByIdGroup3
alter database testSplit add file
(name=N‘ById4‘,filename=N‘J:\Work\数据库\data\ById4.ndf‘,size=5Mb,filegrowth=5mb)
to filegroup ByIdGroup4
alter database testSplit add file
(name=N‘ById5‘,filename=N‘J:\Work\数据库\data\ById5.ndf‘,size=5Mb,filegrowth=5mb)
to filegroup ByIdGroup5
alter database testSplit add file
(name=N‘ById6‘,filename=N‘J:\Work\数据库\data\ById6.ndf‘,size=5Mb,filegrowth=5mb)
to filegroup ByIdGroup6
alter database testSplit add file
(name=N‘ById7‘,filename=N‘J:\Work\数据库\data\ById7.ndf‘,size=5Mb,filegrowth=5mb)
to filegroup ByIdGroup7
alter database testSplit add file
(name=N‘ById8‘,filename=N‘J:\Work\数据库\data\ById8.ndf‘,size=5Mb,filegrowth=5mb)
to filegroup ByIdGroup8
alter database testSplit add file
(name=N‘ById9‘,filename=N‘J:\Work\数据库\data\ById9.ndf‘,size=5Mb,filegrowth=5mb)
to filegroup ByIdGroup9
alter database testSplit add file
(name=N‘ById10‘,filename=N‘J:\Work\数据库\data\ById10.ndf‘,size=5Mb,filegrowth=5mb)
to filegroup ByIdGroup10

执行完成后,右键数据库看文件组跟文件里面是不是多出来啦这些文件组跟文件。

3.使用向导创建分区表

右键到要分区的表--- >> 存储 --- >> 创建分区 --- >>显示向导视图 --- >> 下一步 --- >> 下一步。。

这里举例说下选择列的意思:

假如你选择的是int类型的列:那么你的分区可以指定为1--100W是一个分区,100W--200W是一个分区....

假如你选择的是datatime类型:那么你的分区可以指定为:2014-01-01--2014-01-31一个分区,2014-02-01--2014-02-28一个分区...

根据这样的列数据规则划分,那么在那个区间的数据,在插入数据库时就被指向那个分区存储下来。

我这里选用orderid int类型 --- >> 下一步 --- >>

左边界右边界:就是把临界值划分给上一个分区还是下一个分区。一个小于号,一个小于等于号。

然后下一步下一步最后你会得到分区函数和分区方案。

USE [testSplit]
GO
BEGIN TRANSACTION

--创建分区函数
CREATE PARTITION FUNCTION [bgPartitionFun](int) AS RANGE LEFT FOR VALUES (N‘1000000‘, N‘2000000‘, N‘3000000‘, N‘4000000‘, N‘5000000‘, N‘6000000‘, N‘7000000‘, N‘8000000‘, N‘9000000‘, N‘10000000‘)

--创建分区方案
CREATE PARTITION SCHEME [bgPartitionSchema] AS PARTITION [bgPartitionFun] TO ([PRIMARY], [ByIdGroup1], [ByIdGroup2], [ByIdGroup3], [ByIdGroup4], [ByIdGroup5], [ByIdGroup6], [ByIdGroup7], [ByIdGroup8], [ByIdGroup9], [ByIdGroup10])

--创建分区索引
CREATE CLUSTERED INDEX [ClusteredIndex_on_bgPartitionSchema_635342971076448165] ON [dbo].[BigOrder]
(
    [OrderId]
)WITH (SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF) ON [bgPartitionSchema]([OrderId])

--删除分区索引
DROP INDEX [ClusteredIndex_on_bgPartitionSchema_635342971076448165] ON [dbo].[BigOrder] WITH ( ONLINE = OFF )

COMMIT TRANSACTION

执行上面向导生成的语句。分区完成。。

4.秀一下速度。

首先我在表中插入啦1千万行数据。给表分啦11个分区。前十个分区里面一个是100W条数据。。

说两句:

可见反常现象,扫描次数跟逻辑读取次数都是无分区表的2倍之多,但查询速度却是快啦不少啊。这就是分区的神奇之处啊,所以要相信这世界一切皆有可能。

分区函数,分区方案,分区表,分区索引

1.分区函数

指定分依据区列(依据列唯一),分区数据范围规则,分区数量,然后将数据映射到一组分区上。

创建语法:

create partition function 分区函数名(<分区列类型>) as range [left/right]
for values (每个分区的边界值,....) 
--创建分区函数
CREATE PARTITION FUNCTION [bgPartitionFun](int) AS RANGE LEFT FOR VALUES (N‘1000000‘, N‘2000000‘, N‘3000000‘, N‘4000000‘, N‘5000000‘, N‘6000000‘, N‘7000000‘, N‘8000000‘, N‘9000000‘, N‘10000000‘)

然而,分区函数只定义了分区的方法,此方法具体用在哪个表的那一列上,则需要在创建表或索引是指定。

删除语法:

--删除分区语法
drop partition function <分区函数名>
--删除分区函数 bgPartitionFun
drop partition function bgPartitionFun

需要注意的是,只有没有应用到分区方案中的分区函数才能被删除。

2.分区方案

指定分区对应的文件组。

创建语法:

--创建分区方案语法
create partition scheme <分区方案名称> as partition <分区函数名称> [all]to (文件组名称,....) 
--创建分区方案,所有分区在一个组里面
CREATE PARTITION SCHEME [bgPartitionSchema] AS PARTITION [bgPartitionFun] TO ([ByIdGroup1], [ByIdGroup1], [ByIdGroup1], [ByIdGroup1], [ByIdGroup1], [ByIdGroup1], [ByIdGroup1], [ByIdGroup1], [ByIdGroup1], [ByIdGroup1], [ByIdGroup1])

分区函数必须关联分区方案才能有效,然而分区方案指定的文件组数量必须与分区数量一致,哪怕多个分区存放在一个文件组中。

删除语法:

--删除分区方案语法
drop partition scheme<分区方案名称>
--删除分区方案 bgPartitionSchema
drop partition scheme bgPartitionSchema1

只有没有分区表,或索引使用该分区方案是,才能对其删除。

3.分区表

创建语法:

--创建分区表语法
create table <表名> (
  <列定义>
)on<分区方案名>(分区列名)

--创建分区表
create table BigOrder (
   OrderId              int                  identity,
   orderNum             varchar(30)          not null,
   OrderStatus          int                  not null default 0,
   OrderPayStatus       int                  not null default 0,
   UserId               varchar(40)          not null,
   CreateDate           datetime             null default getdate(),
   Mark                 nvarchar(300)        null
)on bgPartitionSchema(OrderId)

如果在表中创建主键或唯一索引,则分区依据列必须为该列。

4.分区索引

创建语法:

--创建分区索引语法
create <索引分类> index <索引名称>
on <表名>(列名)
on <分区方案名>(分区依据列名)
--创建分区索引
CREATE CLUSTERED INDEX [ClusteredIndex_on_bgPartitionSchema_635342971076448165] ON [dbo].[BigOrder]
(
    [OrderId]
)WITH (SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF) ON [bgPartitionSchema]([OrderId])

使用分区索引查询,可以避免多个cpu操作多个磁盘时产生的冲突。

分区表明细信息

这里的语法,我就不写啦,自己看语句分析吧。简单的很。。

1.查看分区依据列的指定值所在的分区

--查询分区依据列为10000014的数据在哪个分区上
select $partition.bgPartitionFun(2000000)  --返回值是2,表示此值存在第2个分区 

2.查看分区表中,每个非空分区存在的行数

--查看分区表中,每个非空分区存在的行数
select $partition.bgPartitionFun(orderid) as partitionNum,count(*) as recordCount
from bigorder
group by  $partition.bgPartitionFun(orderid)

3.查看指定分区中的数据记录

---查看指定分区中的数据记录
select * from bigorder where $partition.bgPartitionFun(orderid)=2

结果:数据从1000001开始到200W结束

分区的拆分与合并以及数据移动

 1.拆分分区

在分区函数中新增一个边界值,即可将一个分区变为2个。

--分区拆分
alter partition function bgPartitionFun()
split range(N‘1500000‘)  --将第二个分区拆为2个分区

注意:如果分区函数已经指定了分区方案,则分区数需要和分区方案中指定的文件组个数保持对应一致。

 2.合并分区

与拆分分区相反,去除一个边界值即可。

--合并分区
alter partition function bgPartitionFun()
merge range(N‘1500000‘)  --将第二第三分区合并

3.分区中的数据移动

你或许会遇到这样的需求,将普通表数据复制到分区表中,或者将分区表中的数据复制到普通表中。

那么移动数据这两个表,则必须满足下面的要求。

  • 字段数量相同,对应位置的字段相同
  • 相同位置的字段要有相同的属性,相同的类型。
  • 两个表在一个文件组中

1.创建表时指定文件组

--创建表
create table <表名> (
  <列定义>
)on <文件组名>

2.从分区表中复制数据到普通表

--将bigorder分区表中的第一分区数据复制到普通表中
alter table bigorder switch partition 1 to <普通表名>

3.从普通标中复制数据到分区表中

这里要注意的是要先将分区表中的索引删除,即便普通表中存在跟分区表中相同的索引。

--将普通表中的数据复制到bigorder分区表中的第一分区
alter table <普通表名> switch to bigorder partition 1 

分区视图

分区视图是先建立带有字段约束的相同表,而约束不同,例如,第一个表的id约束为0--100W,第二表为101万到200万.....依次类推。

创建完一系列的表之后,用union all 连接起来创建一个视图,这个视图就形成啦分区视同。

很简单的,这里我主要是说分区表,就不说分区视图啦。。

查看数据库分区信息

SELECT OBJECT_NAME(p.object_id) AS ObjectName,
      i.name                   AS IndexName,
      p.index_id               AS IndexID,
      ds.name                  AS PartitionScheme,
      p.partition_number       AS PartitionNumber,
      fg.name                  AS FileGroupName,
      prv_left.value           AS LowerBoundaryValue,
      prv_right.value          AS UpperBoundaryValue,
      CASE pf.boundary_value_on_right
            WHEN 1 THEN ‘RIGHT‘
            ELSE ‘LEFT‘ END    AS Range,
      p.rows AS Rows
FROM sys.partitions                  AS p
JOIN sys.indexes                     AS i
      ON i.object_id = p.object_id
      AND i.index_id = p.index_id
JOIN sys.data_spaces                 AS ds
      ON ds.data_space_id = i.data_space_id
JOIN sys.partition_schemes           AS ps
      ON ps.data_space_id = ds.data_space_id
JOIN sys.partition_functions         AS pf
      ON pf.function_id = ps.function_id
JOIN sys.destination_data_spaces     AS dds2
      ON dds2.partition_scheme_id = ps.data_space_id
      AND dds2.destination_id = p.partition_number
JOIN sys.filegroups                  AS fg
      ON fg.data_space_id = dds2.data_space_id
LEFT JOIN sys.partition_range_values AS prv_left
      ON ps.function_id = prv_left.function_id
      AND prv_left.boundary_id = p.partition_number - 1
LEFT JOIN sys.partition_range_values AS prv_right
      ON ps.function_id = prv_right.function_id
      AND prv_right.boundary_id = p.partition_number
WHERE
      OBJECTPROPERTY(p.object_id, ‘ISMSShipped‘) = 0
UNION ALL
SELECT
      OBJECT_NAME(p.object_id)    AS ObjectName,
      i.name                      AS IndexName,
      p.index_id                  AS IndexID,
      NULL                        AS PartitionScheme,
      p.partition_number          AS PartitionNumber,
      fg.name                     AS FileGroupName,
      NULL                        AS LowerBoundaryValue,
      NULL                        AS UpperBoundaryValue,
      NULL                        AS Boundary,
      p.rows                      AS Rows
FROM sys.partitions     AS p
JOIN sys.indexes        AS i
      ON i.object_id = p.object_id
      AND i.index_id = p.index_id
JOIN sys.data_spaces    AS ds
      ON ds.data_space_id = i.data_space_id
JOIN sys.filegroups           AS fg
      ON fg.data_space_id = i.data_space_id
WHERE
      OBJECTPROPERTY(p.object_id, ‘ISMSShipped‘) = 0
ORDER BY
      ObjectName,
      IndexID,
      PartitionNumber
时间: 2024-10-15 07:56:16

SQL Server表分区【转】的相关文章

SQL Server表分区详解

原文:SQL Server表分区详解 什么是表分区 一般情况下,我们建立数据库表时,表数据都存放在一个文件里. 但是如果是分区表的话,表数据就会按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在不同的磁盘下由多个cpu进行处理.这样文件的大小随着拆分而减小,还得到硬件系统的加强,自然对我们操作数据是大大有利的. 所以大数据量的数据表,对分区的需要还是必要的,因为它可以提高select效率,还可以对历史数据经行区分存档等.但是数据量少的数据就不要凑这个热

SQL SERVER 表分区

一 .SQL SERVER 表分区介绍: SQL Server  引入的表分区技术,让用户能够把数据分散存放到不同的物理磁盘中,提高这些磁盘的并行处理性能以优化查询性能…… 二 .SQL SERVER 数据库表分区由三个步骤来完成: 1.创建分区函数 2.创建分区架构 3.对表进行分区 基于缓存更新机制,我使用时间来进行分区,这里大家根据业务的要求使用合适的字段来作为分区 创建数据库分区文件数量,这里存储一年的数据分成十二个分区,需要现在D盘建立好Data 的文件夹 里面包含Primary 文件

SQL Server表分区的NULL值问题

SQL Server表分区的NULL值问题 SQL Server表分区只支持range分区这一种类型,往往会被大家吐槽 人家MySQL支持四种类型:RANGE分区.LIST分区.HASH分区.KEY分区 共同点是MySQL跟SQL Server也有分区对齐的问题,都是水平切分,大家都允许分区列存在NULL值 这次我们测试SQL Server表分区的分区列的NULL值,究竟NULL值是被存放在哪个区间,以前一直没有注意 测试脚本 --1.创建文件组 ALTER DATABASE [sss] ADD

8、SQL Server 表分区

什么是表分区?表分区其实就是将一个大表分成若干个小表,可以将一些不需要经常操作的数据存在其他的表,然后想查询哪个表的记录,就去对应的表中查询,由于表中的记录变少了,查询的时间也就少了.表分区可以从物理上将一个大表分成几个小表,但是逻辑上还是一个表.所以当执行插入操作的时候,不需要我们去判断应该插入到哪个表中.只需要插入大表中就可以了.SQL Server会自动的将它放在对应的表中.对于查询也是一样,直接查询大表就可以了. 什么时候需要表分区?当数据量过百万时,访问速度明显变慢,并且你的数据是按某

SQL Server表分区

什么是表分区 一般情况下,我们建立数据库表时,表数据都存放在一个文件里. 但是如果是分区表的话,表数据就会按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在不同的磁盘下由多个cpu进行处理.这样文件的大小随着拆分而减小,还得到硬件系统的加强,自然对我们操作数据是大大有利的. 所以大数据量的数据表,对分区的需要还是必要的,因为它可以提高select效率,还可以对历史数据经行区分存档等.但是数据量少的数据就不要凑这个热闹啦,因为表分区会对数据库产生不必要的

SQL Server锁分区特性引发死锁解析

原文:SQL Server锁分区特性引发死锁解析 锁分区技术使得SQL Server可以更好地应对并发情形,但也有可能带来负面影响,这里通过实例为大家介绍,分析由于锁分区造成的死锁情形. 前段时间园友@JentleWang在我的博客锁分区提升并发,以及锁等待实例中问及锁分区的一些特性造成死锁的问题,这类死锁并不常见,我们在这里仔细分析下.不了解锁分区技术的朋友请先看下我的锁分区那篇实例. Code(执行测试脚本时请注意执行顺序,说明) 步骤1 创建测试数据 use tempdb go creat

SQL Server 2008 分区函数和分区表详解

SQL Server 2008 分区函数和分区表详解 2012-10-28 20:06 来源:博客园 作者:zhijianliutang 字号:T|T [摘要]本文详细介绍SQL Server 2008 分区函数和分区表,包括查询某个分区.归档数据.添加分区.删除分区等内容. 当我们数据量比较大的时候,我们需要将大型表拆分为多个较小的表,则只访问部门数据的查询就可以更快的运行,基本原理就是,因为要扫描的数据变的更小.维护任务(例如,重新生成索引或备份表)也可以更快的运行. 我们可以再不通过将表物

深入浅出SQL Server 2008 分区函数和分区表

原文:深入浅出SQL Server 2008 分区函数和分区表 当我们数据量比较大的时候,我们需要将大型表拆分为多个较小的表,则只访问部门数据的查询就可以更快的运行,基本原理就是,因为要扫描的数据变的更小.维护任务(例如,重新生成索引或备份表)也可以更快的运行. 我们可以再不通过将表物理放置在多个磁盘驱动器上来拆分表的情况下获取分区.如果将某个表放置在一个物理驱动器上,将相关表放置在另一个驱动器上,则可以提高查询性能,因为当运行涉及表间连接的查询时,多个磁盘头同时读取数据.可以使用SQL Ser

在一个SQL Server表中的多个列找出最大值

在一个SQL Server表中一行的多个列找出最大值 有时候我们需要从多个相同的列里(这些列的数据类型相同)找出最大的那个值,并显示 这里给出一个例子 IF (OBJECT_ID('tempdb..##TestTable') IS NOT NULL) DROP TABLE ##TestTable CREATE TABLE ##TestTable ( ID INT IDENTITY(1,1) PRIMARY KEY, Name NVARCHAR(40), UpdateByApp1Date DATE