【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)

  

1211: [HNOI2004]树的计数

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2468  Solved: 868

Description

一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。

Input

第一行是一个正整数n,表示树有n个结点。第二行有n个数,第i个数表示di,即树的第i个结点的度数。其中1<=n<=150,输入数据保证满足条件的树不超过10^17个。

Output

输出满足条件的树有多少棵。

Sample Input

4

2 1 2 1

Sample Output

2

HINT

Source

【分析】

  无根树的表示法用prufer数列。【长姿势】

  

将树转化成Prufer数列的方法

一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点。对于一棵顶点已经经过编号的树T,顶点的编号为{1,2,...,n},在第i步时,移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中,重复以上步骤直到原图仅剩2个顶点。

例子

Prufer数列

以上面的树为例子,首先在所有叶子节点中编号最小的点是2,和它相邻的点的编号是3,将3加入序列并删除编号为2的点。接下来删除的点是4,5被加入序列,然后删除5,1被加入序列,1被删除,3被加入序列,此时原图仅剩两个点(即3和6),Prufer序列构建完成,为{3,5,1,3}

将Prufer数列转化成树的方法

设{a1,a2,..an-2}为一棵有n个节点的树的Prufer序列,另建一个集合G含有元素{1..n},找出集合中最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并将该点和Prufer序列首项删除,重复操作n-2次,将集合中剩余的两个点之间连边即可。

例子

仍为上面的树,Prufer序列为{3,5,1,3},开始时G={1,2,3,4,5,6},未出现的编号最小的点是2,将2和3连边,并删去Prufer序列首项和G中的2。接下来连的边为{4,5},{1,5},{1,3},此时集合G中仅剩3和6,在3和6之间连边,原树恢复

  说明树和prufer数列是一一对应的。

  这个数列的特点是:这个点的度数-1=它在数列的出现次数。

  所以数列总长度是n-2。

  这道是prufer数列的裸题。

  首先判断是否无解啦。

  特判n=1,然后d=0,d>=n这种情况。

  且$\sum d[i]-1 = n-2$要成立。

  然后最后的答案就是$\dfrac{(n-2)!}{\Pi (d[i]-1)!}$

  手动消因子即可。最后答案保证不超过long long了。

 1 #include<cstdio>
 2 #include<cstdlib>
 3 #include<cstring>
 4 #include<iostream>
 5 #include<algorithm>
 6 using namespace std;
 7 #define Maxn 160
 8 #define LL long long
 9
10 int d[Maxn],cnt[Maxn];
11
12 void cal(int x,int y)
13 {
14     for(int i=2;i*i<=x;i++) if(x%i==0)
15     {
16         while(x%i==0) cnt[i]+=y,x/=i;
17     }
18     if(x!=1) cnt[x]+=y;
19 }
20
21 int main()
22 {
23     int n;
24     scanf("%d",&n);
25     for(int i=1;i<=n;i++) scanf("%d",&d[i]);
26     if(n==1)
27     {
28         if(d[1]==0) printf("1\n");
29         else printf("0\n");
30     }
31     else
32     {
33         int sum=0;
34         for(int i=1;i<=n;i++)
35         {
36             if(d[i]==0||d[i]>=n) {printf("0\n");return 0;}
37             sum+=(--d[i]);
38         }
39         if(sum!=n-2) printf("0\n");
40         else
41         {
42             for(int i=1;i<=n;i++) cnt[i]=0;
43             for(int i=2;i<=n-2;i++) cal(i,1);
44             for(int i=1;i<=n;i++) for(int j=2;j<=d[i];j++) cal(j,-1);
45             LL ans=1;
46             for(int i=1;i<=n;i++) while(cnt[i]--) ans=1LL*ans*i;
47             printf("%lld\n",ans);
48         }
49     }
50     return 0;
51 }

时间: 2024-10-12 15:44:51

【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)的相关文章

BZOJ 1211 HNOI2004 树的计数 Prufer序列

题目大意:给定一棵树中所有点的度数,求有多少种可能的树 Prufer序列,具体参考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每个数分解质因数,把质因数的次数相加相减,然后再乘起来 注意此题无解需要输出0 当n!=1&&d[i]==0时 输出0 当Σ(d[i]-1)!=n-2时输出0 写代码各种脑残--居然直接算了n-2没用阶乘-- #include<cstdio> #include<cstring> #include<iostrea

【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1 Output 一个整数,表示不同的满足要求的树的个数,无解输出0 Sample Input 3 1 -1 -1 Sample Outp

【XSY1295】calc n个点n条边无向连通图计数 prufer序列

题目大意 求\(n\)个点\(n\)条边的无向连通图的个数 \(n\leq 5000\) 题解 显然是一个环上有很多外向树. 首先有一个东西:\(n\)个点选\(k\)个点作为树的根的生成森林个数为: \[ \binom{n}{k}\times n^{n-k-1}\times k \] 前面\(\binom{n}{k}\)是这些根的选编号的方案数,后面是prufer序列得到的:前面\(n-k-1\)个数可以是\(1\)~\(n\),第\(n-k\)个数是\(1\)~\(k\). 我的理解是:每个

BZOJ 4034 树上操作(树的欧拉序列+线段树)

刷个清新的数据结构题爽一爽? 题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 注意到操作3,询问x到根的路径之间点权和,容易发现这就是欧拉序列中的前缀和. 所以按照树的欧拉序列建线段树,然后操作1就变成单点修改,操作2,就变成了区间内某些点+a,某些点-a,也容易用tag标记

【BZOJ 1211】 [HNOI2004]树的计数

[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] prufer数列的应用 http://www.cnblogs.com/AWCXV/p/7626625.html 这一题没有节点的度数不定. 因此. 所有节点的度数-1的和结果一定要是n-2. 否则就无解. 然后把tot代成n-2就好了. 做法就一样了. (大体思路就是,从n-2个空格里面选出d[i]个空格放节点i,从n-2-d[i]个空格里面选出d[i+1]个空格放节点i+1 (化简一下就成为上文中的式子了. (d[i]==0的

初识prufer序列

前言 \(prufer\)序列应该是一个比较实用的东西. 据\(hl666\)大佬说,一切与度数有关的树上计数问题,都可以用它以及它的性质来解决. 而听说\(ZJOI\)最近特别喜欢出计数题,所以有必要学一学. 转化\(1\):从无根树到\(prefur\)序列 现在,给你一棵树,我们要考虑如何把它变成\(prefur\)序列. 我们需要重复进行以下操作,直至树中只剩下两个点: 找到一个度数为\(1\),且编号最小的点.(其中编号最小保证了后面将会提到的\(prufer\)序列的唯一对应性,同时

BZOJ 1211: [HNOI2004]树的计数( 组合数学 )

知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! --------------------------------------------------------------------------- #include<cstdio> #include<algorithm> #include<cstring> using namespace std; typedef long long ll; c

BZOJ 1211: [HNOI2004]树的计数 purfer序列

1211: [HNOI2004]树的计数 Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的树不超过10^17个. Output 输出满足条件的树有多少棵

bzoj 1211 [HNOI2004]树的计数

[HNOI2004]树的计数 Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的树不超过10^17个. Output 输出满足条件的树有多少棵. Samp