HDU 1384 Intervals &洛谷[P1250]种树

差分约束

差分约束的裸题,关键在于如何建图
我们可以把题目中给出的区间端点作为图上的点,此处应注意,由于区间中被标记的点的个数满足区间加法,这里与前缀和类似,对于区间[L..R]来说,我们加入一条从L-1指向R的边,边权为ci。
这样还不够,因为这样建下来的图是离散的,我们还需要去挖掘题目中的隐藏条件,我们可以发现,区间[L..L]的c值大于零小于一,所以我们可以加入adde(L-1,L,0);adde(L,L-1,-1);
按理来说差分约束的题需要构造一个源点以防图不连通,但由于本题的隐含条件,保证图一定联通,所以不需加入源点。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <queue>
using namespace std;
const int MAXN=300005;
int init(){
    int rv=0,fh=1;
    char c=getchar();
    while(c<'0'||c>'9'){
        if(c=='-') fh=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9'){
        rv=(rv<<1)+(rv<<3)+c-'0';
        c=getchar();
    }
    return fh*rv;
}
int n,head[MAXN],dis[MAXN],nume,L,R;
struct edge{
    int to,nxt,dis;
}e[MAXN];
void adde(int from,int to,int dis){
    e[++nume].to=to;
    e[nume].nxt=head[from];
    e[nume].dis=dis;
    head[from]=nume;
}
void SPFA(){
    queue<int> q;
    for(int i=head[0];i;i=e[i].nxt) q.push(e[i].to);
    while(!q.empty()){
        int u=q.front();q.pop();
        for(int i=head[u];i;i=e[i].nxt){
            int v=e[i].to;
            if(dis[v]<dis[u]+e[i].dis){
                dis[v]=dis[u]+e[i].dis;
                q.push(v);
            }
        }
    }
}
int main(){
    freopen("in.txt","r",stdin);
    while(~scanf("%d",&n)){
        memset(dis,0,sizeof(dis));
        memset(head,0,sizeof(head));
        memset(e,0,sizeof(e));
        nume=0;
        R=0,L=99999999;
        for(int i=1;i<=n;i++){
        int u=init(),v=init(),di=init();
        if(u!=1) adde(0,u-1,0);
        adde(u-1,v,di);
        R=max(R,v);
        L=min(L,u-1);
    }
    for(int i=L;i<R;i++){
        adde(i,i+1,0);
        adde(i+1,i,-1);
    }
    SPFA();
    //for(int i=1;i<=20;i++) cout<<dis[i]<<endl;
    cout<<dis[R]<<endl;
    }

    fclose(stdin);
    return 0;
}

原文地址:https://www.cnblogs.com/Mr-WolframsMgcBox/p/8116593.html

时间: 2024-11-08 20:35:29

HDU 1384 Intervals &洛谷[P1250]种树的相关文章

洛谷P1250种树(贪心)

题目描述 一条街的一边有几座房子.因为环保原因居民想要在路边种些树.路边的地区被分割成块,并被编号成1..N.每个部分为一个单位尺寸大小并最多可种一棵树.每个居民想在门前种些树并指定了三个号码B,E,T.这三个数表示该居民想在B和E之间最少种T棵树.当然,B≤E,居民必须记住在指定区不能种多于区域地块数的树,所以T≤E-B+l.居民们想种树的各自区域可以交叉.你的任务是求出能满足所有要求的最少的树的数量. 写一个程序完成以下工作: 输入输出格式 输入格式: 第一行包含数据N,区域的个数(0<N≤

POJ 1201 &amp;&amp; HDU 1384 Intervals(差分约束系统)

题目地址:POJ 1201   HDU 1384 根据题目意思,可以列出不等式如下: Sj-Si>=c; Si-S(i-1)>=0; S(i-1)-Si>=-1; 然后用最短路spfa来解决这个不等式.用max来当源点,0为终点.最终的-d[0]就是答案. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <

POJ 1201 &amp;amp;&amp;amp; HDU 1384 Intervals(差动制动系统)

职务地址:POJ 1201   HDU 1384 依据题目意思.能够列出不等式例如以下: Sj-Si>=c; Si-S(i-1)>=0; S(i-1)-Si>=-1; 然后用最短路spfa来解决这个不等式. 用max来当源点,0为终点. 终于的-d[0]就是答案. 代码例如以下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #inclu

洛谷1484 种树

题目描述 cyrcyr今天在种树,他在一条直线上挖了n个坑.这n个坑都可以种树,但为了保证每一棵树都有充足的养料,cyrcyr不会在相邻的两个坑中种 树.而且由于cyrcyr的树种不够,他至多会种k棵树.假设cyrcyr有某种神能力,能预知自己在某个坑种树的获利会是多少(可能为负),请你帮助他 计算出他的最大获利. 输入输出格式 输入格式: 第一行,两个正整数n,k. 第二行,n个正整数,第i个数表示在直线上从左往右数第i个坑种树的获利. 输出格式: 输出1个数,表示cyrcyr种树的最大获利.

HDU 1384 Intervals (差分约束)

Sample Input 5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1 Sample Output 6 题意:给你n个数u,v,w:要求在[u,v]区间至少取w个数(整数),求最少要取多少个数. S[v+1] - S[u] >= w, S[i+1] - S[i] >=0&&<=1,S[i] - S[i+1] <=-1. 在u,v+1之间建一条边,跑一遍SPFA即可. #include <iostream> #include <

hdu 1384 Intervals (差分约束)

/* 给你 n 个区间 [Ai, Bi],要求从每一个区间中至少选出 Ci 个数出来组成一个序列 问:满足上面条件的序列的最短长度是多少? 则对于 不等式 f(b)-f(a)>=c,建立 一条 b 到 a 的边 权值为 c,则求的最长路 即为 最小值(集合) 而且有隐含条件:0<=f(a)-f(a-1)<=1 则有边权关系(a,a-1,0)以及(a-1,a,-1); */ /* 一般地,差分约束系统分两类:求最大差和最小差 1.求最大差 建立形如 A-B<=C 的不等式.在原图中加

hdu 1384 Intervals

差分约束系统. 求最小值,用最长路来解决. #include<cstdio> #include<cstring> #include<cmath> #include<queue> #include<vector> #include<algorithm> using namespace std; const int maxn=50010; const int INF=0x7fffffff; struct abc { int startt;

hdu 1384 Intervals 差分约束系统

注意初始化 #include "stdio.h" #include "string.h" #include "algorithm" #include "queue" #include "vector" using namespace std; const int inf=0x7FFFFFFF; struct node { int to; int c; }; int d[50005],inq[50005];

HDU 1384 Intervals【差分约束-SPFA】

类型:给出一些形如a−b<=k的不等式(或a−b>=k或a−b<k或a−b>k等),问是否有解[是否有负环]或求差的极值[最短/长路径].例子:b−a<=k1,c−b<=k2,c−a<=k3.将a,b,c转换为节点:k1,k2,k3转换为边权:减数指向被减数,形成一个有向图: 由题可得(b−a) + (c−b) <= k1+k2,c−a<=k1+k2.比较k1+k2与k3,其中较小者就是c−a的最大值.由此我们可以得知求差的最大值,即上限被约束,此时我