HDU 1003 Max Sum(dp,最大连续子序列和)

Max Sum

Problem Description

Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between
-1000 and 1000).

Output

For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence,
the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input

2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5

Sample Output

Case 1:
14 1 4

Case 2:
7 1 6

题意  求n个数字的最大连续和

DP的入门题目  令d[i]表示以第i个数a为右端的最大连续子序列和   那么很容易得出转移方程  d[i]=max(d[i-1]+a,a)

很显然  当第i个数比以第i-1个数为右端的最大和加上第i个数还大的时候  以第i个数为右端的最大和就是第i个数自己了   同时更新左端为自己

#include<cstdio>
#include<cstring>
using namespace std;
const int N = 100005;
int main()
{
    int a, cas, ans, l, le, ri, n, d[N];
    scanf ("%d", &cas);
    for (int k = 1; k <= cas; ++k)
    {
        memset (d, 0x8f, sizeof (d));
        ans = d[0];
        scanf ("%d", &n);
        for (int i = 1; i <= n; ++i)
        {
            scanf ("%d", &a);
            if (d[i - 1] + a < a)
                d[i] = a, l = i;
            else
                d[i] = d[i - 1] + a;
            if (d[i] > ans)
                ans = d[i], le = l, ri = i;
        }
        if (k > 1) printf ("\n");
        printf ("Case %d:\n%d %d %d\n", k, ans, le, ri);
    }
    return 0;
}

HDU 1003 Max Sum(dp,最大连续子序列和)

时间: 2024-10-13 06:45:19

HDU 1003 Max Sum(dp,最大连续子序列和)的相关文章

HDU 1003.Max Sum【最大连续子序列和】【8月14】

Max Sum Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. Input The first line of the input

HDU 1003 Max Sum (最大连续子序和)

Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 156637    Accepted Submission(s): 36628 Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max su

hdu 1003 Max Sum(dp)

Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. Input The first line of the input contains

HDU - 1003 Max Sum(DP经典题2)

题意:给出一串数,求最大和的字串和起始终点位置. 与导弹问题大同小异,有状态转移方程就很好做了. 状态转移方程:d[i]=(d[i-1]+a[i]>a[i])?d[i-1]+a[i]:a[i]; 1 #include <iostream> 2 #include <cstdio> 3 using namespace std; 4 5 const int maxn=100000+10; 6 7 int dp[maxn],num[maxn]; 8 9 int main(){ 10

HDU 1003 Max Sum 最大连续子序列的和

Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. Input The first line of the input contains

HDU 1003 Max Sum (动规)

Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 141547    Accepted Submission(s): 32929 Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max s

[ACM] hdu 1003 Max Sum(最大子段和模型)

Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 135262    Accepted Submission(s): 31311 Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max s

HDU 1003 Max Sum &amp;&amp; HDU 1231 最大连续子序列 (DP)

Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 154155    Accepted Submission(s): 35958 Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max su

HDU - 1003 - Max Sum &amp;&amp; POJ - 1050 - To the Max (经典DP问题)

题目传送:HDU - 1003 思路:最大子序列和 dp[i]= a[i]   (dp[i-1]<0) dp[i]= dp[i-1]+a[i]   (dp[i-1]>=0) AC代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <queue> #include