Max Sum
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between
-1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence,
the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
题意 求n个数字的最大连续和
DP的入门题目 令d[i]表示以第i个数a为右端的最大连续子序列和 那么很容易得出转移方程 d[i]=max(d[i-1]+a,a)
很显然 当第i个数比以第i-1个数为右端的最大和加上第i个数还大的时候 以第i个数为右端的最大和就是第i个数自己了 同时更新左端为自己
#include<cstdio> #include<cstring> using namespace std; const int N = 100005; int main() { int a, cas, ans, l, le, ri, n, d[N]; scanf ("%d", &cas); for (int k = 1; k <= cas; ++k) { memset (d, 0x8f, sizeof (d)); ans = d[0]; scanf ("%d", &n); for (int i = 1; i <= n; ++i) { scanf ("%d", &a); if (d[i - 1] + a < a) d[i] = a, l = i; else d[i] = d[i - 1] + a; if (d[i] > ans) ans = d[i], le = l, ri = i; } if (k > 1) printf ("\n"); printf ("Case %d:\n%d %d %d\n", k, ans, le, ri); } return 0; }
HDU 1003 Max Sum(dp,最大连续子序列和)