HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】

Eddy‘s research I

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 6664    Accepted Submission(s): 3997

Problem Description

Eddy‘s interest is very extensive, recently he is interested in prime number. Eddy discover the all number owned can be divided into the multiply of prime number, but he can‘t write program, so Eddy has to ask intelligent you to help him, he asks you to write
a program which can do the number to divided into the multiply of prime number factor .

Input

The input will contain a number 1 < x<= 65535 per line representing the number of elements of the set.

Output

You have to print a line in the output for each entry with the answer to the previous question.

Sample Input

11

9412

Sample Output

11

2*2*13*181

Author

eddy

题目大意:任意一个数x,都可以被分解为几个素数(可以相同)相乘的形式,现在给你一个数x,

把它分解为几个素数相乘的形式。

思路:这里x的规模最大为65535,所以用简单的素性判断方法直接暴力也可以过。网上贴的

代码大多简单,这里贴一个用【Miller Rabin素数测试】+【Pollar Rho整数分解】来做的代码

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define MAX_VAL (pow(2.0,60))
//miller_rabbin素性测试
__int64 mod_mul(__int64 x,__int64 y,__int64 mo)
{
    __int64 t,T,a,b,c,d,e,f,g,h,v,ans;
    T = (__int64)(sqrt(double(mo)+0.5));

    t = T*T - mo;
    a = x / T;
    b = x % T;
    c = y / T;
    d = y % T;
    e = a*c / T;
    f = a*c % T;
    v = ((a*d+b*c)%mo + e*t) % mo;
    g = v / T;
    h = v % T;
    ans = (((f+g)*t%mo + b*d)% mo + h*T)%mo;
    while(ans < 0)
        ans += mo;
    return ans;
}

__int64 mod_exp(__int64 num,__int64 t,__int64 mo)
{
    __int64 ret = 1, temp = num % mo;
    for(; t; t >>=1,temp=mod_mul(temp,temp,mo))
        if(t & 1)
            ret = mod_mul(ret,temp,mo);

    return ret;
}

bool miller_rabbin(__int64 n)
{
    if(n == 2)
        return true;
    if(n < 2 || !(n&1))
        return false;
    int t = 0;
    __int64 a,x,y,u = n-1;
    while((u & 1) == 0)
    {
        t++;
        u >>= 1;
    }
    for(int i = 0; i < 50; i++)
    {
        a = rand() % (n-1)+1;
        x = mod_exp(a,u,n);
        for(int j = 0; j < t; j++)
        {
            y = mod_mul(x,x,n);
            if(y == 1 && x != 1 && x != n-1)
                return false;
            x = y;
        }
        if(x != 1)
            return false;
    }
    return true;
}
//PollarRho大整数因子分解
__int64 minFactor;
__int64 gcd(__int64 a,__int64 b)
{
    if(b == 0)
        return a;
    return gcd(b, a % b);
}

__int64 PollarRho(__int64 n, int c)
{
    int i = 1;
    srand(time(NULL));
    __int64 x = rand() % n;
    __int64 y = x;
    int k = 2;
    while(true)
    {
        i++;
        x = (mod_exp(x,2,n) + c) % n;
        __int64 d = gcd(y-x,n);
        if(1 < d && d < n)
            return d;
        if(y == x)
            return n;
        if(i == k)
        {
            y = x;
            k *= 2;
        }
    }
}
__int64 ans[1100],cnt;
void getSmallest(__int64 n, int c)
{
    if(n == 1)
        return;
    if(miller_rabbin(n))
    {
        ans[cnt++] = n;
        return;
    }
    __int64 val = n;
    while(val == n)
        val = PollarRho(n,c--);
    getSmallest(val,c);
    getSmallest(n/val,c);
}

int main()
{
    __int64 X;
    while(~scanf("%I64d",&X))
    {
        cnt = 0;
        getSmallest(X,200);
        sort(ans, ans+cnt);
        for(int i = 0; i < cnt; i++)
        {
            if(i!=0)
                printf("*%I64d",ans[i]);
            else
                printf("%I64d",ans[i]);
        }
        printf("\n");
    }
    return 0;
}

HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】

时间: 2024-12-18 13:40:11

HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】的相关文章

HDU1164_Eddy&amp;#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6664    Accepted Submission(s): 3997 Problem Description Eddy's interest is very extensive, recently he is interested in prime

51nod 1106 质数检测(miller rabin 素数测试.)

1106 质数检测 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出N个正整数,检测每个数是否为质数.如果是,输出"Yes",否则输出"No". Input 第1行:一个数N,表示正整数的数量.(1 <= N <= 1000) 第2 - N + 1行:每行1个数(2 <= S[i] <= 10^9) Output 输出共N行,每行为 Yes 或 No. Input示例 5 2 3 4 5 6

POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num

POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数测试】【Pollar Rho整数分解】

GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b.

POJ2429_GCD &amp;amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b.

POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num

Miller_Rabin大素数测试与Pollard_rho整数分解模版

#include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> using namespace std; typedef __int64 LL; const int Times = 20; LL factor[100], l; LL gcd(LL a, LL b) { return b ? gcd(b, a%b):a; } LL add_mod(LL a, LL b,

HDU 3864 D_num Miller Rabin 质数判断+Pollard Rho大整数分解

链接:http://acm.hdu.edu.cn/showproblem.php?pid=3864 题意:给出一个数N(1<=N<10^18),如果N只有四个约数,就输出除1外的三个约数. 思路:大数的质因数分解只能用随机算法Miller Rabin和Pollard_rho,在测试多的情况下正确率是由保证的. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <c

Miller Rabbin素数测试

步骤 ①先写快速幂取模函数 ②MR算法开始 (1)传入两个参数一个是底数一个是n也就是幂数,如果n是一个合数那么可以判定,这个数一定不是素数 (2)然后开始寻找一个奇数的n去计算,如果最后满足a^d%n=1那么这个可能就是一个素数,然后再判断k=n-1(目前数学不好不明所以) (3)MR结束 ③编写check函数,传入一个参数.首先排除一些情况 (1)是2 3 7 61(int范围内完全可以判断的底数)如果是的话return true; (2)是偶数,1,3的倍数或5的倍数或7的倍数所有条件并起