小明系列问题——小明序列
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1848 Accepted Submission(s): 564
Problem Description
大家都知道小明最喜欢研究跟序列有关的问题了,可是也就因为这样,小明几乎已经玩遍各种序列问题了。可怜的小明苦苦地在各大网站上寻找着新的序列问题,可是找来找去都是自己早已研究过的序列。小明想既然找不到,那就自己来发明一个新的序列问题吧!小明想啊想,终于想出了一个新的序列问题,他欣喜若狂,因为是自己想出来的,于是将其新序列问题命名为“小明序列”。
提起小明序列,他给出的定义是这样的:
①首先定义S为一个有序序列,S={ A1 , A2 , A3 , ... , An },n为元素个数 ;
②然后定义Sub为S中取出的一个子序列,Sub={ Ai1 , Ai2 , Ai3 , ... , Aim },m为元素个数 ;
③其中Sub满足 Ai1 < Ai2 < Ai3 < ... < Aij-1 < Aij < Aij+1 < ... < Aim ;
④同时Sub满足对于任意相连的两个Aij-1与Aij都有 ij - ij-1 > d (1 < j <= m, d为给定的整数);
⑤显然满足这样的Sub子序列会有许许多多,而在取出的这些子序列Sub中,元素个数最多的称为“小明序列”(即m最大的一个Sub子序列)。
例如:序列S={2,1,3,4} ,其中d=1;
可得“小明序列”的m=2。即Sub={2,3}或者{2,4}或者{1,4}都是“小明序列”。
当小明发明了“小明序列”那一刻,情绪非常激动,以至于头脑凌乱,于是他想请你来帮他算算在给定的S序列以及整数d的情况下,“小明序列”中的元素需要多少个呢?
Input
输入数据多组,处理到文件结束;
输入的第一行为两个正整数 n 和 d;(1<=n<=10^5 , 0<=d<=10^5)
输入的第二行为n个整数A1 , A2 , A3 , ... , An,表示S序列的n个元素。(0<=Ai<=10^5)
Output
请对每组数据输出“小明序列”中的元素需要多少个,每组测试数据输出一行。
Sample Input
2 0 1 2 5 1 3 4 5 1 2 5 2 3 4 5 1 2
Sample Output
2 2 1
一个求最长上升子序列变形的问题,限制条件要求相邻两项的下标差值必须大于d。
c[]数组存储当前可用的值。
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<algorithm> using namespace std; #define N 100005 const int inf=0x1f1f1f1f; int a[N],c[N],dp[N]; int n,d; int findd(int x) { int l,r,mid; l=0; r=n-1; while(l<=r) { mid=(l+r)>>1; if(c[mid]<x) l=mid+1; else r=mid-1; } return l; } int solve() { int i,j,ans=0; for(i=0;i<n;i++) { dp[i]=findd(a[i]); ans=max(ans,dp[i]); j=i-d; if(j>=0&&c[dp[j]]>a[j]) c[dp[j]]=a[j]; } return ans; } int main() { while(scanf("%d%d",&n,&d)!=-1) { for(int i=0;i<n;i++) { scanf("%d",&a[i]); c[i]=inf; } printf("%d\n",solve()+1); } return 0; }