分类---概率生成模型

一 分类概述

二 分类实例

现在我们以宝可梦为例,宝可梦共有18中属性,如下:

上边的宝可梦输入是形象化的表示,我们应该讲宝可梦以计算机可以识别的数值进行输入

那么可能我们会问,为什么我们要预测宝可梦的类型呢,这是因为不同类型的宝可梦相遇时,他们是有属性相克的关系。

那么如何分类呢?我们之前提到过regression,可能会有人会按照regression的思路进行分类。

如果你按照上边的方式进行,你会遇到如下问题

那么我们应该怎么做呢?

本次不采用Perceptron 与 SVM,用另一种方式解决这个问题。

引子:

由上边可以延伸出

先算p(c1)与p(c2),这一部分叫做prior。

接着算p(x | c1),如下:

下边简单的介绍高斯分布





那么怎么找到这个高斯分布呢?---->使用Maximum Likelihood

现在我们算我们实例的真正结果

有了上述结果,我们就可以分类了,分类依据如下

真实结果:从左至右,从上往下,第一张图是water 和normal 宝可梦的分布,第二张图是分类结果,第三个是在测试集上的分类结果,其中正确率只有47%,我们增加特征值,考虑7个维度的特征,最后结果的正确率也只有54%

这时候我们就应该将model优化

优化后的model结果如下:考虑7个特征,分类准确率由之前的54%上升到73%,确实性能优化。

现在我们回顾整个的思路

可能会有人问,为什么选高斯分布呢,当然也可以选择其他的分布

后验概率

补充一些高数知识





将sigmoid简化

最后可能会有这样的疑惑,在generative model里面,我们找到N1,N2,u1,u2,∑,得到w和b,然后就可以算概率。为什么我们不直接得到w和b呢?---->logistics regression会讲直接得到w 和b。

参考:http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/Classification%20(v3).pdf

原文地址:https://www.cnblogs.com/Terrypython/p/9394508.html

时间: 2024-10-24 08:41:34

分类---概率生成模型的相关文章

【机器学习详解】概率生成模型与朴素贝叶斯分类器

转载请注明出处http://blog.csdn.net/luoshixian099/article/details/51028244 1.概率生成模型 首先介绍生成模型的概念,然后逐步介绍采用生成模型的步骤. 1.1概念 即对每一种类别Ck分别建立一种模型p(Ck|x),把待分类数据x分别带入每种模型中,计算后验概率p(Ck|x),选择最大的后验概率对应的类别. 假设原始数据样本有K类,生成学习算法是通过对原始数据类p(x|Ck)与p(Ck)建立数据类模型后,采用贝叶斯定理从而得出后验概率p(C

概率生成模型在验证码上的成果论文解读

摘要从少数样本学习并泛化至截然不同的情况是人类视觉智能所拥有的能力,这种能力尚未被先进的机器学习模型所学习到.通过系统神经科学的启示,我们引入了视觉的概率生成模型,其中基于消息传送(message-passing)的推断以统一的方式处理识别.分割和推理(Reasoning).该模型表现出优秀的泛化和遮挡推理(occlusion-reasoning)能力,并在困难的场景文字识别基准任务上优于深度神经网络,且更具有 300 倍的数据效率(data efficient)优势.此外,该模型基本上打破了现

监督学习模型分类 生成模型 判别模型 概率模型 非概率模型 参数模型 非参数模型

判别模型和生成模型:统计学派和贝叶斯学派之争 判别模型: 直接对输入空间到输出空间的映射h(x)做预测,或者直接对条件概率分布P(y|x)做预测 PM,SVM,NN,KNN,LR,DT 模型一般更准确 不需要预设条件 鲁棒性更高 生成模型: 先对概率分布P(x,y)做预测,根据贝叶斯公式得到P(y|x) GDA,NB,HMM 收敛速度一般更快 可以训练包含隐变量的模型 需要假设的先验分布 可以还原出联合概率分布P(x,y) 可以还原出判别模型,但反过来不行 概率模型和非概率模型:预测概率还是预测

生成模型和判别模型(转)

引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X).监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach).所学到的模型分别为生成模型(generative model)和判别模型(discriminative model). 决策函数和条件概率分布 决策函数Y=f(X) 决策函数Y=f(X)

概率主题模型简介 Introduction to Probabilistic Topic Models

此文为David M. Blei所写的<Introduction to Probabilistic Topic Models>的译文,供大家参考. 摘要:概率主题模型是一系列旨在发现隐藏在大规模文档中的主题结构的算法.本文首先回顾了这一领域的主要思想,接着调研了当前的研究水平,最后展望某些有所希望的方向.从最简单的主题模型--潜在狄立克雷分配(Latent Dirichlet Allocation,LDA)出发,讨论了其与概率建模的联系,描述了用于主题发现的两种算法.主题模型日新月异,被扩展和

判别模型(Discriminative model)和生成模型(Generative model)

在前面的章节中,我们介绍过SVM.逻辑回归,这两者都属于监督学习中的一种,即训练数据的标签是给定的,我们希望通过对训练数据进行学习,这样对于给定的新样本数据,我们可以对它的类别标签进行预测.实际上,监督学习又可以分为两类,判别模型(Discriminative model)和生成模型(generative model),前面提到的SVM和逻辑回归都属于判别模型的一种.那么判别模型和生成模型有何区别? 1.1 判别模型和生成模型的区别 我们先来看以前讲过的SVM和逻辑回归(LR)有什么特点.这两者

生成模型与判别模型(转)

生成模型与判别模型 [email protected] http://blog.csdn.net/zouxy09 一直在看论文的过程中遇到这个问题,折腾了不少时间,然后是下面的一点理解,不知道正确否.若有错误,还望各位前辈不吝指正,以免小弟一错再错.在此谢过. 一.决策函数Y=f(X)或者条件概率分布P(Y|X) 监督学习的任务就是从数据中学习一个模型(也叫分类器),应用这一模型,对给定的输入X预测相应的输出Y.这个模型的一般形式为决策函数Y=f(X)或者条件概率分布P(Y|X).      

【转载】判别模型、生成模型与朴素贝叶斯方法

判别模型.生成模型与朴素贝叶斯方法 转载时请注明来源:http://www.cnblogs.com/jerrylead 1判别模型与生成模型 上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率.形式化表示为,在参数确定的情况下,求解条件概率.通俗的解释为在给定特征后预测结果出现的概率. 比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率.换一种思路,我们可以根据山羊的特征首先学习出一个山羊

【转载】先验概率与后验概率,生成模型与判别模型

[注]事情还没有发生,要求这件事情发生的可能性的大小,是先验概率.事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率 Generative Model 与 Discriminative Model [摘要]    - 生成模型(Generative Model) :无穷样本==>概率密度模型 = 产生模型==>预测- 判别模型(Discriminative Model):有限样本==>判别函数 = 预测模型==>预测 [简介] 简单的说,假设o是观察值,