Deep Learning学习 之 卷积神经网络(CNN)

概述

起源

卷积网络最初是受视觉神经机制的启发而设计的,是为识别二维形状而设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他 形式的变形具有高度不变性。

1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,1984年日本学者Fukushima 基于感受野概念提出的神经认知机(neocognitron)模型,它可以看作是卷积神经网络的第一个实现网络,也是感受野概念在人工神经网络领域的首次应用。

神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有 位移或轻微变形的时候,也能完成识别。神经认知机能够利用位移恒定能力从激励模式中学习,并且可识别这些模式的变化形。在其后的应用研究中,Fukushima 将神经认知机主要用于手写数字的识别。随后,国内外的研究人员提出多种卷积神经网络形式,在邮政编码识别(Y. LeCun etc)、车牌识别和人脸识别等方面 得到了广泛的应用。

特点

卷积神经网络是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面,一方面它的神经元间的连接是非全连接的, 另一方面同一层中某些神经元之间的连接的权重是共享的(即相同的)。它的非全连接和权值共享的网络结构使之更类似于生物神经网络,降低了网络模型的复杂度(对于很难学习的深层结构来说,这是非常重要的),减少了权值的数量。

局部连接

回想一下BP神经网络。BP网络每一层节点是一个线性的一维排列状态,层与层的网络节点之间是全连接的。这样设想一下,如果BP网络中层与层之间的节点连接不再是全连接,而是局部连接的。这样,就是一种最简单的一维卷积网络。如果我们把上述这个思路扩展到二维,这就是我们在大多数参考资料上看到的卷积神经网络。具体参看下图:

上图左:全连接网络。如果我们有1000x1000像素的图像,有1百万个隐层神经元,每个隐层神经元都连接图像的每一个像素点,就有1000x1000x1000000=1012个连接,也就是1012个权值参数。

上图右:局部连接网络,每一个节点与上层节点同位置附件10x10的窗口相连接,则1000×1000个隐层神经元就只有100w乘以100,108个参数。其权值连接个数比原来减少了四个数量级。

根据BP网络信号前向传递过程,我们可以很容易计算网络节点的输出。例如,对于上图中被标注为红色节点的净输入,就等于所有与红线相连接的上一层神经元节点值与红色线表示的权值之积的累加。这样的计算过程,很多书上称其为卷积。

事实上,对于数字滤波而言,其滤波器的系数通常是对称的。否则,卷积的计算需要先反向对折,然后进行乘累加的计算。上述神经网络权值满足对称吗?我想答案是否定的!所以,上述称其为卷积运算,显然是有失偏颇的。但这并不重要,仅仅是一个名词称谓而已。只是,搞信号处理的人,在初次接触卷积神经网络的时候,带来了一些理解上的误区。

权值共享

卷积神经网络另外一个特性是权值共享。例如,就上面右边那幅图来说,权值共享,也就是说所有的红色线标注的连接权值相同。这一点,初学者容易产生误解。

上面描述的只是单层网络结构,前A&T Shannon Lab 的 Yann LeCun等人据此提出了基于卷积神经网络的一个文字识别系统 LeNet-5。该系统90年代就被用于银行手写数字的识别。


CNN的结构

刚才说到了卷积网络的特点,如,局部不变性:对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性等。这些特性是网络在有监督方式下学会的。

这种网络结构是为识别二维形状而特殊设计的一个多层感知器,主要有稀疏连接和权值共享两个特点,包括如下形式的约束:

1、 特征提取。每一个神经元从上一层的局部接受域得到突触输人,因而迫使它提取局部特征。一旦一个特征被提取出来, 只要它相对于其他特征的位置被近似地保留下来,它的精确位置就变得没有那么重要了。

2 、特征映射。网络的每一个计算层都是由多个特征映射组成的,每个特征映射都是平面形式的。平面中单独的神经元在约束下共享 相同的突触权值集,这种结构形式具有如下的有益效果:a.平移不变性。b.自由参数数量的缩减(通过权值共享实现)。

3、子抽样。每个卷积层后面跟着一个实现局部平均和子抽样的计算层,由此特征映射的分辨率降低。这种操作具有使特征映射的输出对平移和其他 形式的变形的敏感度下降的作用。

卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。

时间: 2024-10-15 12:42:37

Deep Learning学习 之 卷积神经网络(CNN)的相关文章

Deep Learning学习 之 卷积神经网络(文字识别系统LeNet-5)

部分预备知识可以先看博文,统一了一些专业名词. 原文摘自,在此文中对原文增加了一些注释和修改,统一了与之前博文的专业名词说法,有助于理解. !!!如果读者发现一些数学符号后面有一些奇怪的竖线,那是CSDN的Latex除了问题,大家自行过滤. 在经典的模式识别中,一般是事先提取特征.提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征.然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的

深度学习之卷积神经网络CNN及tensorflow代码实现示例

一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的.当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760 多个:若输入的是28×28 带有颜色的RGB格式的手写数字图片,输入神经元就有28×28×3=2352 个-- .这很容易看出使用全连接神经网络处理图像中的需要训

深度学习(一) 卷积神经网络CNN

Contents 图像数据集基础 全连接神经网络解决图片问题的弊端(前世) 卷积神经网络的今生 网络结构 卷积操作 池化操作 小结 图像数据集基础 数字图像划分为彩色图像.灰度图像.二值图像和索引图像几种.其中,像素是构成图像的基本单位,例如一张28×28像素的图片,即表示横向有28个像素点,纵向有28个像素点. 最常用的彩色图像和灰度图像: 彩色图像:每个像素由RGB三个分量来表示,即红绿蓝.每个分量介于(0,255).那么,对于一个28×28的彩色图像,便可以由三个表示RGB颜色分量的28×

Neural Networks and Deep Learning学习笔记ch1 - 神经网络

近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的.从最主要的感知机開始讲起.到后来使用logistic函数作为激活函数的sigmoid neuron,和非常多其它如今深度学习中常使用的trick. 把深度学习的一个发展过程讲得非常清楚,并且还有非常多源代码和实验帮助理解.看完了整个tutorial后打算再又一次梳理一遍,来写点总结.以后再看其它资料

Deep Learning 第九章 卷积神经网络

原文地址:https://www.cnblogs.com/kxfb/p/9073720.html

卷积神经网络(CNN)学习笔记1:基础入门

卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的

从软件工程的角度写机器学习6——深度学习之卷积神经网络(CNN)实现

卷积神经网络(CNN)实现 背景 卷积神经网络广泛用于图像检测,它的实现原理与传统神经网络基本上是一样的,因此将普遍意义的神经网络和卷积神经网络的实现合成一篇. 神经网络实现思路 "扔掉神经元" 尽管所有教程在介绍神经网络时都会把一大堆神经元画出来,并且以输入节点--神经元--输出结点连线,但是,在编程实现时,基于神经元去编程是低效的.典型如这篇经典文章里面的代码: http://blog.csdn.net/zzwu/article/details/575125. 比较合适的方法是将神

Deep Learning学习 之 CNN代码解析(MATLAB)

MATLAB实现CNN一般会用到deepLearnToolbox-master.但是根据Git上面的说明,现在已经停止更新了,而且有很多功能也不太能够支持,具体的请大家自习看一看Git中的README. deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是 Rasmus Berg Palm ([email protected]) 代码下载:h

《神经网络与深度学习》(五) 卷积神经网络CNN及tensorflow代码实现示例

转自:http://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的.当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760 多个:若输入的是28×28 带有颜色的RGB格式的