C语言中的指针和内存泄漏

在使用 C 语言时,您是否对花时间调试指针和内存泄漏问题感到厌倦?如果是这样,那么本文就适合您。您将了解可能导致内存破坏的指针操作类型,您还将研究一些场景,了解要在使用动态内存分配时考虑什么问题。

引言

对于任何使用 C 语言的人,如果问他们 C 语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏。这些的确是消耗了开发人员大多数调试时间的事项。指针和内存泄漏对某些开发人员来说似乎令人畏惧,但是一旦您了解了指针及其关联内存操作的基础,它们就是您在 C 语言中拥有的最强大工具。

本文将与您分享开发人员在开始使用指针来编程前应该知道的秘密。本文内容包括:

  • 导致内存破坏的指针操作类型
  • 在使用动态内存分配时必须考虑的检查点
  • 导致内存泄漏的场景

如果您预先知道什么地方可能出错,那么您就能够小心避免陷阱,并消除大多数与指针和内存相关的问题。

什么地方可能出错?

有几种问题场景可能会出现,从而可能在完成生成后导致问题。在处理指针时,您可以使用本文中的信息来避免许多问题。

未初始化的内存

在本例中,p 已被分配了 10 个字节。这 10 个字节可能包含垃圾数据,如图 1 所示。

char *p = malloc ( 10 );

图 1. 垃圾数据
 

如果在对这个 p 赋值前,某个代码段尝试访问它,则可能会获得垃圾值,您的程序可能具有不可预测的行为。p可能具有您的程序从未曾预料到的值。

良好的实践是始终结合使用 memset 和 malloc,或者使用 calloc

char *p = malloc (10);
memset(p,’/0’,10);

现在,即使同一个代码段尝试在对 p 赋值前访问它,该代码段也能正确处理 Null 值(在理想情况下应具有的值),然后将具有正确的行为。

内存覆盖

由于 p 已被分配了 10 个字节,如果某个代码片段尝试向 p 写入一个 11 字节的值,则该操作将在不告诉您的情况下自动从其他某个位置“吃掉”一个字节。让我们假设指针 q 表示该内存。

图 2. 原始 q 内容

图 3. 覆盖后的 q 内容

结果,指针 q 将具有从未预料到的内容。即使您的模块编码得足够好,也可能由于某个共存模块执行某些内存操作而具有不正确的行为。下面的示例代码片段也可以说明这种场景。

char *name = (char *) malloc(11);
// Assign some value to name
memcpy ( p,name,11); // Problem begins here 

在本例中,memcpy 操作尝试将 11 个字节写到 p,而后者仅被分配了 10 个字节。

作为良好的实践,每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。一般情况下,memcpy 函数将是用于此目的的检查点。

内存读取越界

内存读取越界 (overread) 是指所读取的字节数多于它们应有的字节数。这个问题并不太严重,在此就不再详述了。下面的代码提供了一个示例。

char *ptr = (char *)malloc(10);
char name[20] ;
memcpy ( name,ptr,20); // Problem begins here

在本例中,memcpy 操作尝试从 ptr 读取 20 个字节,但是后者仅被分配了 10 个字节。这还会导致不希望的输出。

内存泄漏

内存泄漏可能真正令人讨厌。下面的列表描述了一些导致内存泄漏的场景。

  • 重新赋值

    我将使用一个示例来说明重新赋值问题。

    char *memoryArea = malloc(10);
    char *newArea = malloc(10);

    这向如下面的图 4 所示的内存位置赋值。

    图 4. 内存位置

    memoryArea 和 newArea 分别被分配了 10 个字节,它们各自的内容如图 4 所示。如果某人执行如下所示的语句(指针重新赋值)……

    memoryArea = newArea;
    

    则它肯定会在该模块开发的后续阶段给您带来麻烦。

    在上面的代码语句中,开发人员将 memoryArea 指针赋值给 newArea 指针。结果,memoryArea 以前所指向的内存位置变成了孤立的,如下面的图 5 所示。它无法释放,因为没有指向该位置的引用。这会导致 10 个字节的内存泄漏。

    图 5. 内存泄漏

    在对指针赋值前,请确保内存位置不会变为孤立的。

  • 首先释放父块

    假设有一个指针 memoryArea,它指向一个 10 字节的内存位置。该内存位置的第三个字节又指向某个动态分配的 10 字节的内存位置,如图 6 所示。

    图 6. 动态分配的内存 

    free(memoryArea)
    

    如果通过调用 free 来释放了 memoryArea,则 newArea 指针也会因此而变得无效。newArea 以前所指向的内存位置无法释放,因为已经没有指向该位置的指针。换句话说,newArea 所指向的内存位置变为了孤立的,从而导致了内存泄漏。

    每当释放结构化的元素,而该元素又包含指向动态分配的内存位置的指针时,应首先遍历子内存位置(在此例中为 newArea),并从那里开始释放,然后再遍历回父节点。

    这里的正确实现应该为:

    free( memoryArea->newArea);
    free(memoryArea);
  • 返回值的不正确处理

    有时,某些函数会返回对动态分配的内存的引用。跟踪该内存位置并正确地处理它就成为了 calling 函数的职责。

    char *func ( )
    {
    		return malloc(20); // make sure to memset this location to ‘/0’…
    }
    
    void callingFunc ( )
    {
    		func ( ); // Problem lies here
    }

    在上面的示例中,callingFunc() 函数中对 func() 函数的调用未处理该内存位置的返回地址。结果,func()函数所分配的 20 个字节的块就丢失了,并导致了内存泄漏。

归还您所获得的

在开发组件时,可能存在大量的动态内存分配。您可能会忘了跟踪所有指针(指向这些内存位置),并且某些内存段没有释放,还保持分配给该程序。

始终要跟踪所有内存分配,并在任何适当的时候释放它们。事实上,可以开发某种机制来跟踪这些分配,比如在链表节点本身中保留一个计数器(但您还必须考虑该机制的额外开销)。

访问空指针

访问空指针是非常危险的,因为它可能使您的程序崩溃。始终要确保您不是 在访问空指针。

总结

本文讨论了几种在使用动态内存分配时可以避免的陷阱。要避免内存相关的问题,良好的实践是:

    • 始终结合使用 memset 和 malloc,或始终使用 calloc
    • 每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。
    • 在对指针赋值前,要确保没有内存位置会变为孤立的。
    • 每当释放结构化的元素(而该元素又包含指向动态分配的内存位置的指针)时,都应首先遍历子内存位置并从那里开始释放,然后再遍历回父节点。
    • 始终正确处理返回动态分配的内存引用的函数返回值。
    • 每个 malloc 都要有一个对应的 free。
    • 确保您不是在访问空指

http://blog.csdn.net/adcxf/article/details/2288073

时间: 2024-10-05 21:08:08

C语言中的指针和内存泄漏的相关文章

【ZZ】C 语言中的指针和内存泄漏 & 编写高效的C程序与C代码优化

C 语言中的指针和内存泄漏 http://www.ibm.com/developerworks/cn/aix/library/au-toughgame/ 编写高效的C程序与C代码优化 http://www.cnblogs.com/archimedes/p/writing-efficient-c-and-code-optimization.html

C 语言中的指针和内存泄漏

引言 对于任何使用 C 语言的人,如果问他们 C 语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏.这些的确是消耗了开发人员大多数调试时间的事项.指针和内存泄漏对某些开发人员来说似乎令人畏惧,但是一旦您了解了指针及其关联内存操作的基础,它们就是您在 C 语言中拥有的最强大工具. 本文将与您分享开发人员在开始使用指针来编程前应该知道的秘密.本文内容包括: 导致内存破坏的指针操作类型 在使用动态内存分配时必须考虑的检查点 导致内存泄漏的场景 如果您预先知道什么地方可能出错,那么您就能够小

【转】C 语言中的指针和内存泄漏

避免陷阱 级别: 中级 Manish Virmani ([email protected]), 高级软件工程师, IBM 2006 年 10 月 26 日 在使用 C 语言时,您是否对花时间调试指针和内存泄漏问题感到厌倦?如果是这样,那么本文就适合您.您将了解可能导致内存破坏的指针操作类型,您还将研究一些场景,了解要在使用动态内存分配时考虑什么问题. 引言 对于任何使用 C 语言的人,如果问他们 C 语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏.这些的确是消耗了开发人员大多数调试

C语言中的指针和内存泄漏几种情况

引言 原文地址:http://www.cnblogs.com/archimedes/p/c-point-memory-leak.html,转载请注明源地址. 对于任何使用C语言的人,如果问他们C语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏.这些的确是消耗了开发人员大多数调试时间的事项.指针和内存泄漏对某些开发人员来说似乎令人畏惧,但是一旦您了解了指针及其关联内存操作的基础,它们就是您在 C 语言中拥有的最强大工具. 本文将与您分享开发人员在开始使用指针来编程前应该知道的秘密.本文

解析Java的JNI编程中的对象引用与内存泄漏问题

JNI,Java Native Interface,是 native code 的编程接口.JNI 使 Java 代码程序可以与 native code 交互--在 Java 程序中调用 native code:在 native code 中嵌入 Java 虚拟机调用 Java 的代码.JNI 编程在软件开发中运用广泛,其优势可以归结为以下几点: 利用 native code 的平台相关性,在平台相关的编程中彰显优势. 对 native code 的代码重用.native code 底层操作,更

如何理解c语言中得指针

最近有学习了c语言中得指针知识,脑袋都大了,迷迷糊糊理解了一半,由自己查了下资料,跟大家分享下c语言中指针的基本知识吧: 1.指针是一个地址,指向的是个类型. 2:指针指向的是地址,地址指向的是内容. 我们需要一个变量,来存储地址,这个变量的值是地址,但是我们可以通过修改变量的值,来不断的改变地址,但是,我们如果需要改变该个地址的值的话,就需要,对地址的值进行修改,而不改变地址. int a = 10: int *p : p = &a: *p =11: a=? 这里我们看到,p 是一个变量,我们

汇编语言的寻址方式与C语言中的指针是一个东西。

汇编语言的寻址方式与C语言中的指针是类似的! 汇编语言的寻址方式与C语言中的指针:寻找数据的方法. 指针就是存了 变量的地址,寻址方式就是得到保存变量的地址. 当你学了汇编语言,你就知道为什么C语言有函数指针,为什么函数要以return 结尾.为什么main()函数为程序的入口. 给我的感觉就是C语言是汇编语言的进化版本.因为C语言处处都有着汇编语言的影子. 一个小小的建议:先学习汇编语言.自学书籍是 清华大学 王爽的 汇编语言.之后,学习C语言,自学书籍,我还真不好推荐,我用的是C语言入门经典

C语言中的指针与数组的定义与使用

指针的特点 他就是内存中的一个地址 指针本身运算 指针所指向的内容是可以操作的 操作系统是如何管理内存的 栈空间 4M~8m的大小 当进入函数的时候会进行压栈数据 堆空间 4g的大小 1g是操作系统 全局变量 内存映射 可以对内存的内容修改修改硬盘的内容 一般在数据库中经常使用 内存的分配与释放 c语言分配内存的方法 // malloc(需要分配的大小): 这里的分配的大小需要对齐的2的指数 void *mem = malloc(size); 释放内存 // 一般分配的内容都是在堆空间中的 //

C语言中关于指针的学习

指针是C语言中广泛使用的一种数据类型. 运用指针编程是C语言最主要的风格之一.利用指针变量可以表示各种数据结构: 能很方便地使用数组和字符串: 并能象汇编语言一样处理内存地址,从而编出精练而高效的程序.指针极大地丰富了C语言的功能. 学习指针是学习C语言中最重要的一环, 能否正确理解和使用指针是我们是否掌握C语言的一个标志.同时, 指针也是C语言中最为困难的一部分,在学习中除了要正确理解基本概念,还必须要多编程,上机调试.只要作到这些,指针也是不难掌握的. 指针的基本概念 在计算机中,所有的数据