BNU 13064 Dice (I) 前缀和优化DP

Dice (I)

You have N dices; each of them has K faces numbered from 1 to K. Now you have arranged the N dices in a line. You can rotate/flip any dice if you want. How many ways you can set the top faces such that the summation of all the top faces equals S?

Now you are given N, K, S; you have to calculate the total number of ways.

Input

Input starts with an integer T (≤ 25), denoting the number of test cases.

Each case contains three integers: N (1 ≤ N ≤ 1000), K (1 ≤ K ≤ 1000) and S (0 ≤ S ≤ 15000).

Output

For each case print the case number and the result modulo 100000007.

Sample Input

Sample Input

Output for Sample Input


5

1 6 3

2 9 8

500 6 1000

800 800 10000

2 100 10


Case 1: 1

Case 2: 7

Case 3: 57286574

Case 4: 72413502

Case 5: 9

Source

Jane Alam Jan

题意:给你n个骰子,每个骰子有1-k个分数,问你多少种方式的和是S

题解:  首先dp[i][j]表示前i个骰子,和为S的方案数

那么 dp[i][j]=dp[i-1][j-1]+............+dp[i-1][j-k];

对于i完全由i-1的状态得到,我们这可以用   sum[j]表示 dp[i-1][1到j]的一个前缀和,

用i表示当前要计算的now状态,last表示i-1的状态 由此我们可以 得到dp[now][j]=sum[j-1]-sum[j-k-1];

最终答案就是dp[now][s];

///1085422276
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#include<bitset>
#include<set>
#include<vector>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,127,sizeof(a));
#define memfy(a)  memset(a,-1,sizeof(a));
#define TS printf("111111\n");
#define FOR(i,a,b) for( int i=a;i<=b;i++)
#define FORJ(i,a,b) for(int i=a;i>=b;i--)
#define READ(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define mod 100000007
#define inf 100000000
inline ll read()
{
    ll x=0,f=1;
    char ch=getchar();
    while(ch<‘0‘||ch>‘9‘)
    {
        if(ch==‘-‘)f=-1;
        ch=getchar();
    }
    while(ch>=‘0‘&&ch<=‘9‘)
    {
        x=x*10+ch-‘0‘;
        ch=getchar();
    }
    return x*f;
}
//****************************************

#define maxn 15000+5
ll dp[2][maxn],sum[maxn];
int n,k,s;
int main()
{

    int T=read();
    int oo=1;
    while(T--)
    {
        scanf("%d%d%d",&n,&k,&s);
          int last=0,now=1;
          mem(dp);
          dp[now][0]=1;
        for(int i=1;i<=n;i++)
        {
            swap(last,now);
            mem(dp[now]);
            sum[0]=dp[last][0];
           for(int j=1;j<=s;j++)
            {
                sum[j]=(sum[j-1]+dp[last][j])%mod;
            }
            for(int j=1;j<=s;j++)
            {
                if(j<=k) dp[now][j]=(sum[j-1])%mod;
                    else
                dp[now][j]=(sum[j-1]-sum[j-k-1]+mod)%mod;
            }
        }
        printf("Case %d: ",oo++);
        cout<<dp[now][s]<<endl;;
    }
    return 0;
}

代码

时间: 2024-10-19 03:44:33

BNU 13064 Dice (I) 前缀和优化DP的相关文章

HDU-5332(前缀和优化dp/CDQ+NTT)

HDU-5332(CDQ+NTT/前缀和优化dp) 考虑依次求出\(i\)个点的答案 假设当前有\(i-1\)个点,枚举第\(i\)个点前面的点数\(j\),则\(dp_i=dp_{i-j-1}\cdot (j+1)^2\cdot C(i-1,i-j-1)\cdot j!\) 直接转移是\(O(n^2)\)的,可以看到是一个\(dp\)转移与差值有关,所以可以用\(CDQ\)分治+\(NTT\)解决 关于这种简单粗暴的做法,模板题HDU-5730 题解 以下是暴力的代码 #include<bit

bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Status][Discuss] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Ou

P5241 序列(滚动数组+前缀和优化dp)

P5241 序列 挺神仙的一题 看看除了dp好像没什么其他办法了 想着怎么构个具体的图出来,然鹅不太现实. 于是我们想办法用几个参数来表示dp数组 加了几条边肯定要的吧,于是加个参数$i$表示已加了$i$条边 这显然是不够的.于是我们又想:强连通分量.....连通块....... 于是加个$j$表示还有$j$个强连通分量 于是dp数组为$f[i][j]$ 这是我们发现一个问题,状态$f[i][j]$不一定是合法的. 那dp不就GG了吗 再次撕烤,我们发现每次加上的边无非就3种情况: 1.把2个强

bzoj1044 [HAOI2008]木棍分割——前缀和优化DP

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1044 咳咳...终于A了... 居然没注意到正着找pos是n方会TLE...所以要倒着找pos: 二分还写错了,改了半天... 小心前缀和取模后相减变成负数!!!!!!!!! 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std; int const maxn

Codeforces 712 D. Memory and Scores (DP+滚动数组+前缀和优化)

题目链接:http://codeforces.com/contest/712/problem/D A初始有一个分数a,B初始有一个分数b,有t轮比赛,每次比赛都可以取[-k, k]之间的数,问你最后A比B大的情况有多少种. dpA[i][j]表示第i轮获得j分的情况数.因为第i轮只和第i-1轮有关,所以这里i用滚动数组优化. 要是普通做法3个for就会超时,所以要用前缀和优化,dpA[i][j]可以由一段连续的dp[i - 1][x]转移过来,所以用sumA数组存取dp[i - 1][x]的前缀

hdu 2993 MAX Average Problem (斜率优化dp入门)

MAX Average Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5855    Accepted Submission(s): 1456 Problem Description Consider a simple sequence which only contains positive integers as

Tyvj1305最大子序和(单调队列优化dp)

描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7当m=2或m=3时,S=5+1=6 输入格式 第一行两个数n,m第二行有n个数,要求在n个数找到最大子序和 输出格式 一个数,数出他们的最大子序和 测试样例1 输入 6 4 1 -3 5 1 -2 3 输出 7 备注 数据范围:100%满足n,m<=300000 是不超过m,不是选m个!!!!! /* 单调队列优化dp 单调队列维护的是前

HDU3045 Picnic Cows(斜率优化DP)

Picnic Cows Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2192    Accepted Submission(s): 675 Problem Description It’s summer vocation now. After tedious milking, cows are tired and wish to t

Parade(单调队列优化dp)

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 902    Accepted Submission(s): 396 Problem Description Panagola, The Lord of city F lik