连续受限玻尔兹曼机

连续 RBM

连续 RBM 是受限玻尔兹曼机的一种形式,它通过不同类型的对比散度采样接受连续的输入(也就是比整数切割得更细的数字)。这允许 CRBM 处理图像像素或字数向量这类被归一化到 0 到 1 之间的小数的向量。

应该注意,深度学习网络的每一层都需要四个元素:输入、系数、偏置项以及变换(激活算法)。

输入是数值数据,是一个来自于前面层(或者原始数据)的向量。系数是通过每个节点层的特征的权重。偏置项确保部分节点无论如何都能够被激活。变换是一种额外的算法,它在数据通过每一层以后以一种使梯度(梯度是网络必须学习的)更容易被计算的方式压缩数据。

这些额外算法和它们的组合可以逐层变化。

一种有效的连续 RBM 在可见(或者输入)层上使用高斯变换,在隐藏层上使用整流线性单元(ReLU)变换。这在面部重建中特别有用。对于处理二进制数据的 RBM 而言,只需要进行二进制转换即可。

高斯变换在 RBM 的隐藏层上的表现不好。相反,使用 ReLU 变换能够表示比二进制变换更多的特征,我们在深度置信网络中使用了它。

REF

https://baijiahao.baidu.com/s?id=1599798281463567369&wfr=spider&for=pc

https://uwaterloo.ca/data-analytics/sites/ca.data-analytics/files/uploads/files/dbn2.pdf

原文地址:https://www.cnblogs.com/emanlee/p/12403919.html

时间: 2024-10-21 04:33:34

连续受限玻尔兹曼机的相关文章

深度学习深入浅出:受限玻尔兹曼机RBM(一)基本概念

技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 最近在复习经典机器学习算法的同时,也仔细看了一些深度学习的典型算法.深度学习是机器学习的"新浪潮",它的成功主要得益于深度"神经网络模型"的优异效果.这个小系列打算深入浅出地记录一下深度学习中常用的一些算法.第一篇先写一下"受限玻尔兹曼机"RBM,会分若干个小段写,这是第一段,关于RBM的基本概念. 网上有很多关于RBM的介绍,但是很多写的比较简略,跳过了很多细节,本文

MCMC采样法 & 受限玻尔兹曼机

受限玻尔兹曼机(RBM)学习笔记 1)这篇文章中有一部分把MCMC采样法讲的比较形象. 2)RBM,个人感觉是一种通过神经网络来表示概率图模型的方法,或者说通过神经网络来表示观察到的样本发生概率的方法.而与神经网络的主要不同之处在于使用了能量函数作为目标函数.

受限玻尔兹曼机

最近我与同学参加2016Byte Cup国际机器学习竞赛,对推荐系统一无所知的我们只能参考别人的文章.这里我们找到一篇比较好的文章:是北大博士吴金龙的博士论文.这里主要是记录学习其中受限玻尔兹曼机的过程. 下面PSP表格是预计各个模块所化时间. PSP2.1 Personal Software Process Stages Time/h Planning 计划   · Estimate · 估计这个项目需要多少时间  0.5 Development 开发   ·Analysis ·需求分析(包括

受限玻尔兹曼机学习(一)

时间:2014.07.02 地点:基地 ------------------------------------------------------------------------ 一.简述 受限玻尔兹曼机9RBM)是一类具有两层结构.对称链接无自反馈的随机神经网络模型,层与层之间是全连接,层内无链接,也就是说是一个二部图. RBM是一种有效的特征提取方法,常用于初始化前馈神经网络,可明显提高泛化能力.而由多个RBM结构堆叠而成的深度信念网络能提取出更好更抽象的特征,从而用来分类.一下先从玻

受限玻尔兹曼机(RBM)

RBM用到了能量模型. 简单的概括一下能量模型.假设一个孤立系统(总能量$E$一定,粒子个数$N$一定),温度恒定为1,每个粒子有$m$个可能的状态,每个状态对应一个能量$e_i$.那么,在这个系统中随机选出一个粒子,这个粒子处在状态$k$的概率,或者说具有状态$k$的粒子所占的比例为: $$p(state=k)=\frac{e^{-e_k}}{\sum e^{-e_i}}$$ 扩展开来,在一个正则系综中,系统$i$处在状态$S_i$的概率为: $$P(state=i)=\frac{e^{-E_

受限玻尔兹曼机和深度置信网络

2016-07-20   11:21:33 1受限玻尔兹曼机 受限玻尔兹曼机(Restricted Boltzmann Machines, RBM)[1]由深度学习专家Hinton提出,有很多方面的应用,最成熟的有图像领域的图像识别和手写体数字识别,作为协同过滤算法对某一个未知值做预测,针对具有高维时间序列属性的数据,如人体移动的特征,同样也是做预测,还有针对文档数据分类和音频数据识别等等. 受限玻尔兹曼机RBM是一种特殊的马尔科夫随机场(Markov Random Field, MRF).一个

RBM(受限玻尔兹曼机)

基于能量模型 (EBM) 基于能量模型将关联到感兴趣的变量每个配置的标量能量.学习修改的能量函数使他它的形状具有最好的性能.例如,我们想的得到最好的参量拥有较低的能量. EBM的概率模型定义通过能量函数的概率分布,如下所示: 规则化系数 Z 称为分区函数和物理系统的能量模型相似. 一种基于能量模型可以学习通过随机梯度下降的方法处理负对数似然训练数据的.至于 logistic 回归分析我们将首次作为负对数似然定义对数似然然后损失函数. 使用随机梯度  更新参数权值,  是模型中的各种参数. EBM

[深度学习]受限玻尔兹曼机生成手写数字训练样本实现分析

实现 我们构造了RBM类. 网络的参数可以通过构造器或者是输入参数初始化. 这样RBM可以用作构造一个深度网络, 在这种情况下, 权值矩阵和隐层偏置是和一个MLP网络的sigmoidal层共享的. [深度学习]受限玻尔兹曼机生成手写数字训练样本实现分析

[深度学习]受限玻尔兹曼机生成手写数字训练样本分析

基于能量的模型(EBM) 基于能量的模型将每一个我们感兴趣的变量构造联系到一个标量能量上. 学习就是修改能量方程从而使得它的外形有我们需要的特点. 举例来说, 我们希望的是: 期望构造的能量低. 基于能量的概率性模型定义了一个概率分布, 它是由能量方程决定的: 归一化因子Z被称为配分函数, 类比于物理系统. 基于能量的模型可以通过SGD(随机梯度下降)算法基于数据的负值对数相似性(NLL)学习得到. 对于对数回归我们首先定义了对数相似性, 之后是损耗函数, 即 负值对数相似性(NLL). 使用随