《OpenCV:访问Mat图像中每个像素值》

图像容器Mat

还是先看Mat的存储形式。Mat和Matlab里的数组格式有点像,但一般是二维向量,如果是灰度图,一般存放<uchar>类型;如果是RGB彩色图,存放<Vec3b>类型。

单通道灰度图数据存放格式:

多通道的图像中,每列并列存放通道数量的子列,如RGB三通道彩色图:

注意通道的顺序反转了:BGR。通常情况内存足够大的话图像的每一行是连续存放的,也就是在内存上图像的所有数据存放成一行,这中情况在访问时可以提供很大方便。可以用 isContinuous()函数来判断图像数组是否为连续的。

访问图像中的像素

高效的方法:C操作符[ ]

最快的是直接用C风格的内存访问操作符[]来访问:

  1. Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
    {
        // accept only char type matrices
        CV_Assert(I.depth() != sizeof(uchar));
        int channels = I.channels();
        int nRows = I.rows ;
        int nCols = I.cols* channels;
        if (I.isContinuous())
        {
            nCols *= nRows;
            nRows = 1;
        }
        int i,j;
        uchar* p;
        for( i = 0; i < nRows; ++i)
        {
            p = I.ptr<uchar>(i);
            for ( j = 0; j < nCols; ++j)
            {
                p[j] = table[p[j]];
            }
        }
        return I;
    }

    注意:书中这段代码是有问题的,前面写成了

int nRows = I.rows * channels;
int nCols = I.cols;

  一般情况 isContinous为true,运行不会出错,但你可以注释掉那个if,会有访问越界的问题。

这种访问形式就是在每行定义一个指针,然后在内存上直接连续访问。如果整个数组在内存上都是连续存放的,那么只需要定义一个指针就可以访问所有的数据!如单通道的灰度图访问方式如下:

uchar* p = I.data;
for( unsigned int i =0; i < ncol*nrows; ++i)
    *p++ = table[*p];

安全的方法:迭代器iterator

相比用指针直接访问可能出现越界问题,迭代器绝对是非常安全的方法:

Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
{
    // accept only char type matrices
    CV_Assert(I.depth() != sizeof(uchar));
    const int channels = I.channels();
    switch(channels)
    {
    case 1:
        {
            MatIterator_<uchar> it, end;
            for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
                *it = table[*it];
            break;
        }
    case 3:
        {
            MatIterator_<Vec3b> it, end;
            for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)
            {
                (*it)[0] = table[(*it)[0]];
                (*it)[1] = table[(*it)[1]];
                (*it)[2] = table[(*it)[2]];
            }
        }
    }
    return I;
}

  这里我们只定义了一个迭代器,用了一个for循环,这是因为在OpenCV里迭代器会访问每一列然后自动跳到下一行,不用管在内存上是否isContinous。另外要注意的是在三通道图像中我们定义的是 <Vec3b>格式的迭代器,如果定义成uchar,则只能访问到B即蓝色通道的值。
这种方式虽然安全,但是挺慢的,一会儿就知道了。

更慢的方法:动态地址计算

这种方法在需要连续扫描所有点的应用时并不推荐,因为它更实用与随机访问。这种方法最基本的用途是访问任意的某一行某一列:

Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
{
    // accept only char type matrices
    CV_Assert(I.depth() != sizeof(uchar));
    const int channels = I.channels();
    switch(channels)
    {
    case 1:
        {
            for( int i = 0; i < I.rows; ++i)
                for( int j = 0; j < I.cols; ++j )
                    I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];
            break;
        }
    case 3:
        {
            Mat_<Vec3b> _I = I;  

            for( int i = 0; i < I.rows; ++i)
                for( int j = 0; j < I.cols; ++j )
                {
                    _I(i,j)[0] = table[_I(i,j)[0]];
                    _I(i,j)[1] = table[_I(i,j)[1]];
                    _I(i,j)[2] = table[_I(i,j)[2]];
                }
                I = _I;
                break;
        }
    }
    return I;
}  

因为这种方法是为随机访问设计的,所以真的是奇慢无比。。。

减小颜色空间 color space reduction

现在来介绍下上述函数对每个元素的操作,也就是用table更改像素值。这里其实是做了个减小颜色空间的操作,这在一些识别之类的应用中会大大降低运算复杂度。类如uchar类型的三通道图像,每个通道取值可以是0~255,于是就有 256*256个不同的值。我们可以通过定义:
0~9 范围的像素值为 0
10~19 范围的像素值 为 10
20~29 范围的像素值为 20
。。。。。。
着这样的操作将颜色取值降低为 26*26*26 种情况。这个操作可以用一个简单的公式:

来实现,因为C++中int类型除法操作会自动截余。 类如 Iold=14; Inew=(Iold/10)*10=(14/10)*10=1*10=10;
在处理图像像素时,每个像素需要进行一遍上述计算也需要一定的时间花销。但我们注意到其实只有 0~255 种像素,即只有256种情况。进一步可以把256种计算好的结果提前存在表中 table 中,这样每种情况不需计算直接从 table 中取结果即可。

int divideWith=10;
uchar table[256];
for (int i = 0; i < 256; ++i)
    table[i] = divideWith* (i/divideWith);

于是table[i]存放的是值为i的像素减小颜色空间的结果,这样也就可以理解上述方法中的操作:

p[j] = table[p[j]];

LUT : Look up table

OpenCV 很聪明的有个 LUT 函数就是针对这种 Look up talbe 的操作:

Mat lookUpTable(1, 256, CV_8U);
uchar* p = lookUpTable.data;
for( int i = 0; i < 256; ++i)
    p[i] = table[i];
for (int i = 0; i < times; ++i)
    LUT(I, lookUpTable, J);

算法计时

为了验证几种方法的效率,可以用一个简单的计时和输出:

double t;
t = (double)getTickCount();
t = 1000*((double)getTickCount() - t)/getTickFrequency();
t /= times;  

实验结果

原图:

降低颜色空间结果:

算法时间:

更清楚的时间对比表:

转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7771760
实验代码下载:http://download.csdn.net/detail/xiaowei_cqu/4443761

时间: 2024-12-09 18:09:44

《OpenCV:访问Mat图像中每个像素值》的相关文章

CI框架源码阅读笔记3 全局函数Common.php

从本篇开始,将深入CI框架的内部,一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说,全局函数具有最高的加载优先权,因此大多数的框架中BootStrap引导文件都会最先引入全局函数,以便于之后的处理工作). 打开Common.php中,第一行代码就非常诡异: if ( ! defined('BASEPATH')) exit('No direct script access allowed'); 上一篇(CI框架源码阅读笔记2 一切的入口 index

IOS测试框架之:athrun的InstrumentDriver源码阅读笔记

athrun的InstrumentDriver源码阅读笔记 作者:唯一 athrun是淘宝的开源测试项目,InstrumentDriver是ios端的实现,之前在公司项目中用过这个框架,没有深入了解,现在回来记录下. 官方介绍:http://code.taobao.org/p/athrun/wiki/instrumentDriver/ 优点:这个框架是对UIAutomation的java实现,在代码提示.用例维护方面比UIAutomation强多了,借junit4的光,我们可以通过junit4的

Yii源码阅读笔记 - 日志组件

?使用 Yii框架为开发者提供两个静态方法进行日志记录: Yii::log($message, $level, $category);Yii::trace($message, $category); 两者的区别在于后者依赖于应用开启调试模式,即定义常量YII_DEBUG: defined('YII_DEBUG') or define('YII_DEBUG', true); Yii::log方法的调用需要指定message的level和category.category是格式为“xxx.yyy.z

源码阅读笔记 - 1 MSVC2015中的std::sort

大约寒假开始的时候我就已经把std::sort的源码阅读完毕并理解其中的做法了,到了寒假结尾,姑且把它写出来 这是我的第一篇源码阅读笔记,以后会发更多的,包括算法和库实现,源码会按照我自己的代码风格格式化,去掉或者展开用于条件编译或者debug检查的宏,依重要程度重新排序函数,但是不会改变命名方式(虽然MSVC的STL命名实在是我不能接受的那种),对于代码块的解释会在代码块前(上面)用注释标明. template<class _RanIt, class _Diff, class _Pr> in

CI框架源码阅读笔记5 基准测试 BenchMark.php

上一篇博客(CI框架源码阅读笔记4 引导文件CodeIgniter.php)中,我们已经看到:CI中核心流程的核心功能都是由不同的组件来完成的.这些组件类似于一个一个单独的模块,不同的模块完成不同的功能,各模块之间可以相互调用,共同构成了CI的核心骨架. 从本篇开始,将进一步去分析各组件的实现细节,深入CI核心的黑盒内部(研究之后,其实就应该是白盒了,仅仅对于应用来说,它应该算是黑盒),从而更好的去认识.把握这个框架. 按照惯例,在开始之前,我们贴上CI中不完全的核心组件图: 由于BenchMa

CI框架源码阅读笔记2 一切的入口 index.php

上一节(CI框架源码阅读笔记1 - 环境准备.基本术语和框架流程)中,我们提到了CI框架的基本流程,这里这次贴出流程图,以备参考: 作为CI框架的入口文件,源码阅读,自然由此开始.在源码阅读的过程中,我们并不会逐行进行解释,而只解释核心的功能和实现. 1.       设置应用程序环境 define('ENVIRONMENT', 'development'); 这里的development可以是任何你喜欢的环境名称(比如dev,再如test),相对应的,你要在下面的switch case代码块中

Apache Storm源码阅读笔记

欢迎转载,转载请注明出处. 楔子 自从建了Spark交流的QQ群之后,热情加入的同学不少,大家不仅对Spark很热衷对于Storm也是充满好奇.大家都提到一个问题就是有关storm内部实现机理的资料比较少,理解起来非常费劲. 尽管自己也陆续对storm的源码走读发表了一些博文,当时写的时候比较匆忙,有时候衔接的不是太好,此番做了一些整理,主要是针对TridentTopology部分,修改过的内容采用pdf格式发布,方便打印. 文章中有些内容的理解得益于徐明明和fxjwind两位的指点,非常感谢.

CI框架源码阅读笔记4 引导文件CodeIgniter.php

到了这里,终于进入CI框架的核心了.既然是"引导"文件,那么就是对用户的请求.参数等做相应的导向,让用户请求和数据流按照正确的线路各就各位.例如,用户的请求url: http://you.host.com/usr/reg 经过引导文件,实际上会交给Application中的UsrController控制器的reg方法去处理. 这之中,CodeIgniter.php做了哪些工作?我们一步步来看. 1.    导入预定义常量.框架环境初始化 之前的一篇博客(CI框架源码阅读笔记2 一切的入

jdk源码阅读笔记之java集合框架(二)(ArrayList)

关于ArrayList的分析,会从且仅从其添加(add)与删除(remove)方法入手. ArrayList类定义: p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Monaco } span.s1 { color: #931a68 } public class ArrayList<E> extends AbstractList<E> implements List<E> ArrayList基本属性: /** *

dubbo源码阅读笔记--服务调用时序

上接dubbo源码阅读笔记--暴露服务时序,继续梳理服务调用时序,下图右面红线流程. 整理了调用时序图 分为3步,connect,decode,invoke. 连接 AllChannelHandler.connected(Channel) line: 38 HeartbeatHandler.connected(Channel) line: 47 MultiMessageHandler(AbstractChannelHandlerDelegate).connected(Channel) line: