复数的复习

理解复数,首先要理解虚数,在实数范围内,负数开方无解,于是引入虚数的概念,虚数i2=-1,实数与虚数组成的数叫复数。

形式:a+bi,a为实部,b为虚部,i为虚数单位,这样实数可以看做虚部为0的复数,虚数可以看做实部为0的复数。

虚数的几何解释

假设我们有一个坐标系,横轴为实数,纵轴为虚数,将i想象成沿坐标轴逆时针旋转90°,如下图

实数1经过一次90°旋转结果为i,再旋转90°结果为-1。

如果是顺时针旋转,如图可知,旋转-90°得到-i,再旋转-90°结果-1,与逆时针结果相同,由此可知,sqrt(-1)=+i/-i

根据以上图示,可以很容易推导出in按照以下规律循环

1,i,i2,i3,i4,i5,…

1 = 1

i= i

i2 = -1

i3 = -i

i4 = 1

i5 = i

复数的几何解释,有了以上虚数的解释,复数就好理解了,1+i在坐标系中如下图

其表示的向量(1,i)与横轴夹角为45°

那么可以很容易理解a+bi

那么a+bi到底代表多大数值?我们使用其与原点的距离作为复数的值,即

S =sqrt(a2+b2)

复数相乘几何意义为旋转

假设有一复数3+4i,将其逆时针旋转45°,1+i为45°,那么量复数相乘结果为

(3+4i)*(1+i) = -1 + 7i

如下图

复数四则运算法则

加法:(a+bi)+(c+di) = (a+c)+(b+d)i

减法:(a+bi)-(c+di)=(a-c)+(b-d)i

乘法:(a+bi)*(c+di)=(ac-bd)+(ad+bc)i

除法:(a+bi)/(c+di)=(ac+bd)/(c2+d2) + (bc-ad)/(c2+d2)i

欧拉公式  = cos(x) + isin(x)

参考资料

http://blog.sciencenet.cn/blog-781910-633671.html

https://betterexplained.com/articles/a-visual-intuitive-guide-to-imaginary-numbers

文中图片来源于网络,版权归原作者所有。

时间: 2024-10-12 23:40:22

复数的复习的相关文章

二级Python复习中的复数注意事项

前言 尽管全国二级Python整体上难度不大,但是要求却非常细致,与二级VFP.Access.二级C和C++等非常相似,因为这毕竟是软件开发的基础要求,而且考生如果将来致力到软件开发的话,还将有很远的路子要走,所以,二级的这种"非常细致"的要求,从这一点上讲,并不过分.既然是国家二级,既然是一种统考考试,肯定存在很大的规律性可循.但是,教材的细致性与熟练性是每一位考生都不能马虎的. 关于复数 关于复数,在教材第三章<基本数据类型>中,作为数字类型的一个子类出现,所占篇幅仅有

复分析复习2

关于复数的辐角.主辐角都没什么可说的.只要注意一点就是复数$z$的主辐角的取值范围 0≤argz<2π 显然$[0,+\infty)$上的点都是$\arg$的间断点.并且$\arg$是$\mathbb{C}\setminus\{0\}\to[0,2\pi)$的单值函数.但是辐角${\rm Arg}$确是一个多值函数. 设$z=x+iy$,由此便可用平面上的坐标来与之一一对应,这样便得到了复平面$\mathbb C$.现在的问题是无穷远点$\infty$如何处理? 几何模型是将一个单位球与$\ma

学习《Python核心编程》做一下知识点提要,方便复习(一)

学习<Python核心编程>做一下知识点提要,方便复习. 计算机语言的本质是什么? a-z.A-Z.符号.数字等等组合成符合语法的字符串.供编译器.解释器翻译. 字母组合后产生各种变化拿python来说就是.keyword.数值,类,函数,运算符,操作符...... 1.变量不用声明,类型不固定 2.True,False = False,True读出了什么?True是个bool()类实例 3.类型工厂函数就是python2.2后把int() bool()等对数据类型操作的函数分装成对象 类 了

正交原理的复数详细推导过程

最开始学习正交原理是从实数学习的,当时觉得实数已经很好了,为什么要学习复杂的复数推导过程呢,随着慢慢的深入,发现复数才是更加通用的.这里就把学习中的推导笔记发上来,方便自己复习,也可以对其它正在学习这方面的朋友有所帮助. 这里有一个长度为M的滤波器,对于输入序列u(n),n=0,1,2...,滤波器的输出y(n)表示为 \[\begin{array}{*{20}{c}}{y(n) = \sum\limits_{k = 0}^{M - 1} {w_k^*u(n - k)} }&{n = 0,1,2

深度复数网络 Deep Complex Networks

转自:https://www.jiqizhixin.com/articles/7b1646c4-f9ae-4d5f-aa38-a6e5b42ec475  (如有版权问题,请联系本人) 目前绝大多数深度学习模型中的数学都是实数值的,近日,蒙特利尔大学.加拿大国家科学院-能源/材料/通信研究中心(INRS-EMT).微软 Maluuba.Element AI 的多名研究者(其中包括 CIFAR Senior Fellow Yoshua Bengio)在 arXiv 上发布了一篇 NIPS 2017(

算法提高 6-17复数四则运算

时间限制:1.0s   内存限制:512.0MB 设计复数库,实现基本的复数加减乘除运算. 输入时只需分别键入实部和虚部,以空格分割,两个复数之间用运算符分隔:输出时按a+bi的格式在屏幕上打印结果.参加样例输入和样例输出. 注意考虑特殊情况,无法计算时输出字符串"error". 样例输入 2 4 * -3 2 样例输出 -14-8i 样例输入 3 -2 + -1 3 样例输出 2+1i 有一组数据就是通不过. #include <iostream> #include &l

C++基础复习

一. C++与C的比较: C语言是一个结构化语言,它的重点在于算法和数据结构,C语言的设计首先要考虑的是如何通过一个过程,对输入(或环境条件)进行运算处理得到的输出(或实现过程(事物)控制). C++,首要考虑的是如何构造一个对象模型,让这个模型能够契合与之对应的问题域,这样就可以通过获取对象的状态信息得到输出或实现过程(事物)控制. 所以C语言和C++的最大区别在于它们解决问题的思想不同,一个面向过程一个面向对象. C++对C的"增强",表现在六个方面: 1.类型检测更为严格. 2.

大量逻辑判断优化的思路——责任链模式复习总结及其和状态模式对比

俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习!涉及的总结知识点如下: 责任链模式概念和例子 使用的条件 和状态模式的比较分析 责任链的优缺点 纯的责任链和不纯的责任链 javax.servlet.Filter#doFilter()方法源码分析 基于AOP思想,模拟一个拦截器 前面说了一个状态模式,总结过程中发现和这个责任链的使用场景很类似,都是为了解耦大量复杂业务逻辑判断的,那么他们有什么不同呢?回忆状态模式——状态模式允许通过改变对象的内部状态而改变对象自身的行为,这个对象

算法分析与设计复习

算法分析与设计复习 2016年初,研一上学期期末考试前,复习并总结算法分析与设计科目的内容.复习过程参照<算法导论>中文第2版,同时参照PPT,章节划分根据PPT内容 概要: 第一章 概述 第二章 插入排序&分治策略 第三章 复杂度分析 第四章 堆与堆排序 第五章 快速排序 第六章 线性时间排序 第一章 概述 算法的应用范围 算法在诸如生物等诸多领域有其应用 算法的意义 算法在很多情况下让不可能完成的事情变成了可能,让处理的很慢的过程变快. 一个铺垫 一串不全为0的数,怎么取能拿到一段