数论之欧几里德算法(一)

简单介绍:

欧几里德算法。又称辗转相除法,是求解最大公约数的算法。

定理:

欧几里德算法的理论支撑为GCD递归定理。以下介绍这个定理。

GCD递归定理:

对随意非负整数a和随意正整数b。gcd(a , b) = gcd(b , a%b)

代码:

由上述定理。我们能够直接得出gcd函数的代码:

int gcd(int a,int b){
    return b==0?a:gcd(b,a%b);
}

扩展:

依据a,b的最大公约数,我们能够求得a,b的最小公倍数。

lcm函数:

int lcm(int a,int b){
    return a/gcd(a,b)*b;
}
时间: 2024-12-14 07:53:04

数论之欧几里德算法(一)的相关文章

POJ-1061 青蛙的约会-数论扩展欧几里德算法入门及推导

Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这

数论之欧几里德算法(二)

简介: 扩展欧几里德算法,是重写欧几里德算法以计算出额外有用信息的一种形式.算法用于计算满足下列条件的整系数x与y: d = gcd(a , b) = ax + by 实现: 根据GCD递归定理,我们有:gcd(a , b) = gcd(b , a%b),我们将使用该定理来推导扩展欧几里德算法: gcd(a , b) = ax + by gcd(b , a%b) = bX + (a%b)Y ax + by = bX + (a%b)Y ax + by = bX + (a - (a/b)*b)Y a

ACM数论之旅4---扩展欧几里德算法(欧几里德(???)?是谁?)

为什么老是碰上 扩展欧几里德算法 ( •?∀•? )最讨厌数论了 看来是时候学一学了 度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •?∀•? )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k 也肯定有解 (废话,把x和y乘k倍就好了) 那么已知 a,b 求 一组解 x,y 满足 ax+by = gcd(a, b) 这个公式 1 #include<cstdio> 2 typedef long long LL;

扩展欧几里德算法

文章来源:http://blog.csdn.net/zhjchengfeng5/article/details/7786595 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了

扩展欧几里德算法及其证明

扩展欧几里德算法: 已知a, b求解一组x,y,使它们满足等式: ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理). 扩展欧几里德常用在求解模线性方程及方程组中. 证明: ax+by=gcd(a,b); 1. (1) a = 0,ax+by = gcd(a,b) = gcd(0,b) = b, 此时x = 0(此时x的值是任意的),y = 1: (2)b = 0, ax + by = gcd(a,b) = gcd(a,0) = a, 此时x = 1,y = 0(此时y

扩展欧几里德算法详解

扩展欧几里德算法 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了,这就是欧几里德算法,用 C++ 语言描述如下: 由于是用递归写的,所以看起来很简洁,也很好记忆.那么什么是扩

Sicily1099-Packing Passengers-拓展欧几里德算法

最终代码地址:https://github.com/laiy/Datastructure-Algorithm/blob/master/sicily/1099.c 做这题的时候查了别人的做法花了半天都没搞明白怎么做的,我认为别的博客写的难以让人理解所以就造了这个轮子. 题目: 1099. Packing Passengers Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description PTA, Pack ‘em Tight Air

数学(1.费马定理 2.扩展欧几里德算法 3.莫比乌斯反演)

费马小定理(Fermat Theory)是数论中的一个重要定理,其内容为: 假如p是质数,且Gcd(a,p)=1,那么 a(p-1) ≡1(mod p).即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1. 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式: ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理).扩展欧几里德常用在求解模线性方程及方程组中. 欧几里德算法的扩展 扩展欧几里德算

欧几里德算法gcd及其拓展终极解释

这个困扰了自己好久,终于找到了解释,还有自己改动了一点点,耐心看完一定能加深理解 扩展欧几里德算法-求解不定方程,线性同余方程. 设过s步后两青蛙相遇,则必满足以下等式: (x+m*s)-(y+n*s)=k*l(k=0,1,2....) 稍微变一下形得: (n-m)*s+k*l=x-y 令n-m=a,k=b,x-y=c,即 a*s+b*l=c 只要上式存在整数解,则两青蛙能相遇,否则不能. 首先想到的一个方法是用两次for循环来枚举s,l的值,看是否存在s,l的整数解,若存在则输入最小的s, 但