二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布

1. 二项分布与beta分布对应  

2. 多项分布与狄利克雷分布对应

3. 二项分布是什么?n次bernuli试验服从 二项分布

二项分布是N次重复bernuli试验结果的分布。 bernuli实验是什么?做一次抛硬币实验,该试验结果只有2种情况,x= 1, 表示正面。 x=0,表示反面。 bernuli(x|p) = p^x*(1-p)^(1-x)。如果了n次, 我们只要数一下正面的次数n_x,即可得到反面的次数n-n_x。 n次重复的nernuli试验: n-bernuli(n_x|N,p) = p^n_x*(1-p)^(n-n_x), (忽略前边的组合系数)

2.13. 多项分布是什么?是k维的贝努力试验。n次抛骰子试验服从多项试验。

multi(n_x|p,N) =pi(p^n_k),  每个骰子上的编号都是一个贝努力试验结果。 n_x, p都是一个向量。 表示,比如我们想知道编号1出现2ci, 标号2出现5次, 3出现2次,4出现4次, 5出现3次,6出现2次的概率: n_x = [2,5,2,4,3,3, 对应的概率分别是p=[0,1, 0,3 0.1, 0..2, 0.15, 0.15]

4. 贝叶斯学派: 贝叶斯全概率公式: P(u|x) = P(X|u)*P(u).    贝叶斯公式右边的P(X|u)也称为似然分布, 先验分布是P(u)

先验和后验是同一分布时,我们称之为共轭。如果选用beta分布。 对一个X为2值变量来说, P(X|u) 服从二项分布P(X|u,N) = u^x* (1-u)*(N-x). 如果先验分布也有类似的指数分布,那样的话后延分布也

beta分布一般用来表示二项分布的先验分布。 因为beta分布与二项分布的类似。 也

时间: 2024-10-09 23:45:21

二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布的相关文章

伯努利分布、二项分布、多项分布、Beta分布、Dirichlet分布

1. 伯努利分布 伯努利分布(Bernoulli distribution)又名两点分布或0-1分布,介绍伯努利分布前首先需要引入伯努利试验(Bernoulli trial). 伯努利试验是只有两种可能结果的单次随机试验,即对于一个随机变量X而言: 伯努利试验都可以表达为“是或否”的问题.例如,抛一次硬币是正面向上吗?刚出生的小孩是个女孩吗?等等 如果试验E是一个伯努利试验,将E独立重复地进行n次,则称这一串重复的独立试验为n重伯努利试验.进行一次伯努利试验,成功(X=1)概率为p(0<=p<

(转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布

1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  关于递推公式,可以用分部积分完成证明: 2. Beta函数 B函数,又称为Beta函数或者第一类欧拉积分,是一个特殊的函数,定义如下: B函数具有如下性质: 3. Beta分布 在介绍贝塔分布(Beta distribution)之前,需要先明确一下先验概率.后验概率.似然函数以及共轭分布的概念.

二项分布 多项分布 伽马函数 Beta分布

http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: 做n次伯努利实验,每次实验为1的概率为p,实验为0的概率为1-p;有k次为1,n-k次为0的概率,就是二项分布B(n,p,k). 二项分布计算: B(n,p,k) = 换一种表达方式,做n次伯努利实验,每次实验为1的概率是p1, 实验为0的概率是p2,有p1+p2=1:问x1次为实验为1,x2次实

Beta分布和Dirichlet分布

在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac{\Gamma (m) \Gamma (n)}{\Gamma (m+n)} \end{align*}于是令\begin{align*} f_{m,n}(x) = \begin{cases} \frac{x^{m-1} (1-x)^{n-1}}{B(m, n)} = \frac{\Gamma (m+n)}{\G

贝叶斯公式的共轭分布

共轭分布是一种极大简化贝叶斯分析的方法.其作用是,在贝叶斯公式包含多种概率分布的情况下,使这些分布的未知参数在试验前被赋予的物理意义,延续到试验后,便于分析. 1. 贝叶斯公式 贝叶斯公式如下: 其中,表示模型中的未知参数,表示样本.这里有三个重要的概念:先验分布.似然函数,以及后验分布. 是先验分布,表示在观察样本之前,按照经验认为符合某种概率分布.比如说在抛硬币之前,我们认为正反两面出现的概率各为1/2. 是似然函数,表示在给定模型参数的条件下,样本数据服从这一概率模型的相似程度. 是后验分

通俗理解LDA主题模型(boss)

0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布.beta分布.Dirichlet分布 一个概念和一个理念:共轭先验和贝叶斯框架 两个模型:pLSA.LDA(在本文第4 部分阐述) 一个采样:Gibbs采样 本文便按照上述5个步骤来阐述,希望读者看完本文后,能对LDA有个尽量清晰完整的了解.同时,本文基于邹博讲LDA的PPT.rickjin的LDA

PRML第二章笔记

这是关于PRML第二章的学习笔记.主要从内容思想的理解,具体的理论推导需要结合原文以及概率论的知识.这一章主要讲概率分布,概率分布的?个作?是在给定有限次观测x1, - , xN的前提下,对随机变量x的概率分布p(x)建模.这个问题被称为密度估计,分为二元 多元 高斯 以及先验分布 beta 狄利克雷分布,最后将这些分布统一到指数簇家族一类中. 引言:概率分布分为两个经典学派,频率学派和贝叶斯学派. 频率学派关注数据,认为数据是不会说谎的,一切以数据为中心,采用最大似然函数来求取data 的概率

LDA主题模型三连击-入门/理论/代码

本文将从三个方面介绍LDA主题模型--整体概况.数学推导.动手实现. 关于LDA的文章网上已经有很多了,大多都是从经典的<LDA 数学八卦>中引出来的,原创性不太多. 本文将用尽量少的公式,跳过不需要的证明,将最核心需要学习的部分与大家分享,展示出直观的理解和基本的数学思想,避免数学八卦中过于详细的推导.最后用python 进行实现. [TOC] 概况 第一部分,包括以下四部分. 为什么需要 LDA是什么 LDA的应用 LDA的使用 为什么需要 挖掘隐含语义信息.一个经典的例子是 "

LDA主题模型算法

随着互联网的发展,文本分析越来越受到重视.由于文本格式的复杂性,人们往往很难直接利用文本进行分析.因此一些将文本数值化的方法就出现了.LDA就是其中一种很NB的方法. LDA有着很完美的理论支撑,而且有着维度小等一系列优点.本文对LDA算法进行介绍,欢迎批评指正. 本文目录: 1.Gamma函数 2.Dirichlet分布 3.LDA文本建模 4.吉普斯抽样概率公式推导 5.使用LDA 1.Gamma函数 T(x)= ∫ tx-1 e-tdt    T(x+1) = xT(x) 若x为整数,则有