HDU 1588 Gauss Fibonacci(矩阵快速幂+二分等比序列求和)
ACM
题意:
g(i)=k*i+b;i为变量。
给出k,b,n,M,问( f(g(0)) + f(g(1)) + ... + f(g(n)) ) % M的值。
分析:
把斐波那契的矩阵带进去,会发现这个是个等比序列。
推倒:
S(g(i))
= F(b) + F(b+k) + F(b+2k) + .... + F(b+nk)
// 设 A = {1,1,0,1}, (花括号表示矩阵...)
// 也就是fib数的变化矩阵,F(x) = (A^x) * {1,0}
= F(b) + (A^k)F(b) + (A^2k)F(b)+….+(A^nk)F(b)
// 提取公因式 F(b)
= F(b) [ E +A^k + A^2k + ….+ A^nk] // (E表示的是单位矩阵)
// 令 K = A^k 后
E +A^k + A^2k + ….+ A^nk 变成 K^0+K^1+K^2+…+K^n
然后等比数列是可以二分求和的:数论_等比数列二分求和
代码:
/* * Author: illuz <iilluzen[at]gmail.com> * Blog: http://blog.csdn.net/hcbbt * File: 1588.cpp * Create Date: 2014-08-04 16:13:51 * Descripton: Matrix */ #include <cstdio> #include <cstring> #include <iostream> #include <map> #include <algorithm> using namespace std; #define repf(i,a,b) for(int i=(a);i<=(b);i++) typedef long long ll; const int N = 20; const int SIZE = 2; // max size of the matrix ll MOD; ll k, b, n; struct Mat{ int n; ll v[SIZE][SIZE]; // value of matrix Mat(int _n = SIZE) { n = _n; } void init(ll _v = 0) { memset(v, 0, sizeof(v)); if (_v) repf (i, 0, n - 1) v[i][i] = _v; } void output() { repf (i, 0, n - 1) { repf (j, 0, n - 1) printf("%lld ", v[i][j]); puts(""); } puts(""); } } a, B, C; Mat operator * (Mat a, Mat b) { Mat c(a.n); repf (i, 0, a.n - 1) { repf (j, 0, a.n - 1) { c.v[i][j] = 0; repf (k, 0, a.n - 1) { c.v[i][j] += (a.v[i][k] * b.v[k][j]) % MOD; c.v[i][j] %= MOD; } } } return c; } Mat operator ^ (Mat a, ll k) { Mat c(a.n); c.init(1); while (k) { if (k&1) c = a * c; a = a * a; k >>= 1; } return c; } Mat operator + (Mat a, Mat b) { Mat c(a.n); repf (i, 0, a.n - 1) repf (j, 0, a.n - 1) c.v[i][j] = (b.v[i][j] + a.v[i][j]) % MOD; return c; } Mat operator + (Mat a, ll b) { Mat c = a; repf (i, 0, a.n - 1) c.v[i][i] = (a.v[i][i] + b) % MOD; return c; } // 二分求和1..n Mat calc(Mat a, int n) { if (n == 1) return a; if (n&1) return (a^n) + calc(a, n - 1); else return calc(a, n/2) * ((a^(n/2)) + 1); } int main() { a.init(); a.v[0][0] = a.v[0][1] = a.v[1][0] = 1; while (~scanf("%lld%lld%lld%lld", &k, &b, &n, &MOD)) { B = (a^k); C = calc(B, n - 1) + (a^0); C = (a^b) * C; printf("%lld\n", C.v[0][1]); } return 0; }
HDU 1588 Gauss Fibonacci(矩阵快速幂+二分等比序列求和)
时间: 2024-12-25 22:59:25