UVA 1541 - To Bet or Not To Bet 记忆化DP概率

Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a new game. It is played on a linear sequence of squares as shown below.

A chip is initially placed on the Start square. The player then tries to move the chip to the End square through a series of turns, at which point the game ends. In each turn a coin is flipped: if the coin is heads the chip is moved one square to the right and if the coin is tails the chip is moved two squares to the right (unless the chip is one square away from the End square, in which case it just moves to the End square). At that point, any instruction on the square the coin lands on must be followed. Each instruction is one of the following:

1. Move right n squares (where n is some positive integer)

2. Move left n squares (where n is some positive integer)

3. Lose a turn

4. No instruction

After following the instruction, the turn ends and a new one begins. Note that the chip only follows the instruction on the square it lands on after the coin ip. If, for example, the chip lands on a square that instructs it to move 3 spaces to the left, the move is made, but the instruction on the resulting square is ignored and the turn ends. Gambling for this game proceeds as follows: given a board layout and an integer T, you must wager whether or not you think the game will end within T turns.

After losing his shirt and several other articles of clothing, Alexander has decided he needs professional help-not in beating his gambling addiction, but in writing a program to help decide how to bet in this game.

Input will consist of multiple problem instances. The first line will consist of an integer n indicating the number of problem instances. Each instance will consist of two lines: the rst will contain two integers m and T (1 <= m <= 50, 1 <= T <= 40), where m is the size of the board excluding the Start and End squares, and T is the target number of turns. The next line will contain instructions for each of the m interior squares on the board. Instructions for the squares will be separated by a single space, and a square instruction will be one of the following: +n, -n, L or 0 (the digit zero). The first indicates  a right move of n squares, the second a left move of n squares, the third a lose-a-turn square, and the fourth indicates no instruction for the square. No right or left move will ever move you off the board.

Output for each problem instance will consist of one line, either

Bet for. x.xxxx

if you think that there is a greater than 50% chance that the game will end in T or fewer turns, or

Bet against. x.xxxx

if you think there is a less than 50% chance that the game will end in T or fewer turns, or

Push. 0.5000

otherwise, where x.xxxx is the probability of the game ending in T or fewer turns rounded to 4 decimal places. (Note that due to rounding the calculated probability for display, a probability of 0.5000 may appear after the Bet for. or Bet against. message.)

5
4 4
0 0 0 0
3 3
0 -1 L
3 4
0 -1 L
3 5
0 -1 L
10 20
+1 0 0 -1 L L 0 +3 -7 0
Bet for. 0.9375
Bet against. 0.0000
Push. 0.5000
Bet for. 0.7500
Bet for. 0.8954

题意: 给你一个长度为n的一维棋盘, 起点在0终点在n以后,每个棋盘格子上都有一个指示, 每次走之前 扔硬币判断走一步还是走两步 到相应的格子上 再按照指示,问你从在给定的T步内起点到终点的概率是多少

题解:我们对于dp[i][j] 表示当前在i格子,剩余能走j步,能走到终点的概率   记忆花递归就好了   每次有两种选择,每种选择有不同指示

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long ll;

const int N = 50 + 5;

int vis[N][N], destory[N], cool[N],n;
char str[N];
double dp[N][N];
double dfs(int d,int k) {
    if(vis[d][k]) return dp[d][k];
    if(d == n + 1) return dp[d][k] = 1.0;
    if(k <= 0) return dp[d][k] = 0;
    double& ret = dp[d][k] = 0;vis[d][k] = 1;
    int nex = d + 1;
    if(destory[nex])
        ret += 0.5 * dfs(nex,k - 2);
    else ret += 0.5 * dfs(nex + cool[nex],k - 1);
    nex = d + 2 > n + 1 ? n+1:d+2;
    if(destory[nex])
        ret += 0.5 * dfs(nex,k - 2);
    else ret += 0.5 * dfs(nex + cool[nex],k - 1);
    return ret;
}
void init() {
    memset(vis,0,sizeof(vis));
    memset(destory,0,sizeof(destory));
    memset(cool,0,sizeof(cool));
}
int main() {
    int T, cas = 1, m ,t;
    scanf("%d",&T);
    while(T--) {
            init();
        scanf("%d%d",&n,&t);
        for(int i = 1; i <= n; i++) {
            scanf("%s",str);
            if(str[0] == ‘L‘) destory[i] = 1;
            else sscanf(str, "%d", &cool[i]);
        }
        double ans = dfs(0,t);
         if (fabs(ans - 0.5) < 1e-9)
            printf("Push. 0.5000\n");
        else if (ans > 0.5)
            printf("Bet for. %.4lf\n", ans);
        else
            printf("Bet against. %.4lf\n", ans);
    }
    return 0;
}

代码

时间: 2024-10-13 23:19:39

UVA 1541 - To Bet or Not To Bet 记忆化DP概率的相关文章

UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每个点的权值就是当前强连通分量点的个数. /* Tarjan算法求有向图的强连通分量set记录了强连通分量 Col记录了强连通分量的个数. */ #include <iostream> #include<cstring> #include<cstdio> #include<string> #include<algo

【UVA】10651-Pebble Solitaire(直接递归或者记忆化)

不知道这个题UVA的数据是怎么的,用2个方法交了,第一次直接递归,第二次记忆化剪枝,时间竟然一样!? 直接郁闷了,简单的二进制表示状态和二进制运算. 14145176 10651 Pebble Solitaire Accepted C++ 0.009 2014-09-04 09:18:21 #include<cstdio> #include<algorithm> #include<string> #include<cstring> #include<m

uva 10285 Longest Run on a Snowboard (记忆化搜索)

uva 10285 Longest Run on a Snowboard 题目大意:给出一张n*m的雪地地图,每格标注的是该点的高度.从地势高的地方可以滑到地势低的地方(只能上下左右滑),问最长的滑雪距离. 解题思路:逐一访问各点,若该点没有被访问过,则进行DFS找出该点为滑雪起始点的最长滑雪距离,用dp数组记录,若该点已被访问过,则返回其对应的dp数组记录的值. #include <cstdio> #include <cstring> #include <algorithm

AC自动机+全概率+记忆化DP UVA 11468 Substring

题目传送门 题意:训练之南P217 分析:没有模板串也就是在自动机上走L步,不走到val[u] == v的节点的概率 PS:边读边insert WA了,有毒啊! #include <bits/stdc++.h> using namespace std; const int K = 20 + 5; const int L = 100 + 5; const int NODE = K * K; const int SIZE = 66; int idx[256], n; struct AC { int

UVa 10285 Longest Run on a Snowboard【记忆化搜索】

题意:和最长滑雪路径一样, 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include <cmath> 5 #include<stack> 6 #include<vector> 7 #include<map> 8 #include<set> 9 #include<queue> 10 #include<algori

uva 1541 - To Bet or Not To Bet(记忆化+概率)

题目链接:uva 1541 - To Bet or Not To Bet 题目大意:在一个棋盘上进行游戏,给定棋盘长度m,不算起始和终止,以及走的步数t.从起点开始,每轮可以丢一枚硬币,正面移动2步,方面移动1步:中间的格子有写操作,包括移动一定步数,停止一次操作.问说在t步内到达终点的概率. 解题思路:dp[i][j]表示走到第i格用掉j步的概率,然后记忆化搜索,因为保证状态重复,并且可以确定递归终止条件. #include <cstdio> #include <cstring>

UVA 1541 - To Bet or Not To Bet(概率递推)

UVA 1541 - To Bet or Not To Bet 题目链接 题意:这题题意真是神了- -,看半天,大概是玩一个游戏,开始在位置0,终点在位置m + 1,每次扔一个硬币,正面走一步,反面走两步,走到的步上有4种情况: 1.向前走n步 2.向后走n步 3.停止一回合 4.无影响 问能在t次机会内,走到终点m + 1(如果跃过也算走到了)的概率,大于0.5,等于0.5,小于0.5对应不同输出 思路:题意懂了就好办了,其实就是递推就可以了dp[i][j]表示第i次机会,落在j步的概率,然后

UVA - 1541 To Bet or Not To Bet (DP+概率)

Description Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a new game. It is played on a linear sequence of squares as shown below. A chip is initially placed on the Start square. The player then trie

POJ1644:To Bet or Not To Bet(概率DP)

Description Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a new game. It is played on a linear sequence of squares as shown below. A chip is initially placed on the Start square. The player then trie