poj2155 Matrix 【二维树状数组】

有工具在手,这题就是一个模板题,就是有点不清楚,最后问的是单个元素的值,它怎么sum求出来的

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
using namespace std;

#define maxn 1005

int c[maxn][maxn];
int Row, Col;

inline int Lowbit(const int &x)
{
    return x & (-x);
}

int Sum(int i, int j)
{
    int tempj, sum = 0;
    while (i > 0)
    {
        tempj = j;
        while (tempj > 0)
        {
            sum += c[i][tempj];
            tempj -= Lowbit(tempj);
        }
        i -= Lowbit(i);
    }
    return sum;
}

void Update(int i, int j, int num)
{
    int tempj;
    while (i <= Row)
    {
        tempj = j;
        while (tempj <= Col)
        {
            c[i][tempj] += num;
            tempj += Lowbit(tempj);
        }
        i += Lowbit(i);
    }
}
int main()
{
    #ifndef ONLINE_JUDGE
		freopen("G:/1.txt","r",stdin);
		freopen("G:/2.txt","w",stdout);
	#endif
    int T;
	scanf("%d",&T);
	while(T--)
	{
	    memset(c,0,sizeof(c));
		int N,Q;scanf("%d%d",&N,&Q);getchar();
		Row=N;Col=N;
		for(int i=1;i<=Q;i++)
		{
			char ques;int a,b,c,d;
			scanf("%c ",&ques);//getchar();
			if(ques=='C')
			{
				scanf("%d%d%d%d",&a,&b,&c,&d);getchar();
				c++;d++;
				Update(a,b,1);
				Update(c,d,1);
				Update(c,b,-1);
				Update(a,d,-1);
			}
			else if(ques=='Q')
			{
				scanf("%d%d",&a,&b);getchar();
				printf("%d\n",1&Sum(a,b));
			}
		}
		printf("\n");
	}
}

poj2155 Matrix 【二维树状数组】

时间: 2024-10-13 06:48:53

poj2155 Matrix 【二维树状数组】的相关文章

POJ2155 Matrix 二维树状数组的应用

有两种方法吧,一个是利用了树状数组的性质,很HDU1556有点类似,还有一种就是累加和然后看奇偶来判断答案 题意:给你一个n*n矩阵,然后q个操作,C代表把以(x1,y1)为左上角到以(x2,y2)为右下角的矩阵取反,意思就是矩阵只有0,1元素,是0的变1,是1的变0,Q代表当前(x,y)这个点的状况,是0还是1? 区间修改有点特别,但是若区间求和弄懂了应该马上就能懂得: add(x2,y2,1); add(x2,y1,-1);//上面多修改了不需要的一部分,所以修改回来 add(x1,y2,-

[poj2155]Matrix(二维树状数组)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ2155 Matrix 二维树状数组应用

一个N*N(1<=N<=1000)的矩阵,从(1,1)开始,给定一些操作C和一些查询Q,一共K条(1<=K<=50000): C x1,y1,x2,y2 表示从x1行y1列到x2行y2列的元素全部反转(0变成1,1变成0): Q x y表示询问x行y列的元素是0还是1. 题目乍一看感觉还是很难,如果能记录每一个元素的状态值,那答案是显而易见的,但是元素过多,如果每次都对每一个元素进行更新状态的话,复杂度太高.实际上只要记录边界的特定坐标的反转次数,最好的选择那就是二维树状数组了.

POJ2155:Matrix(二维树状数组,经典)

Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). We can change the matrix in the following way. Given a rectangle whose upp

Matrix 二维树状数组的第二类应用

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17976   Accepted: 6737 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ 2155 Matrix(二维树状数组,绝对具体)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ 2155 Matrix(二维树状数组,绝对详细)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ 2155 Matrix 二维树状数组

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 19174   Accepted: 7207 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ - 2155 Matrix (二维树状数组 + 区间改动 + 单点求值 或者 二维线段树 + 区间更新 + 单点求值)

POJ - 2155 Matrix Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we ha

Matrix (二维树状数组)

Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). We can change the matrix in the following way. Given a rectangle whose upp