一个菜鸡对数论的一点点理解... 莫比乌斯函数 定义函数\(\mu(n)\)为: 当n有平方因子时,\(\mu(n)=0\). 当n没有平方因子时,\(\mu(n)=(-1)^{\omega(n)}\),\(\omega(n)\)表示n不同质因子的个数. 性质1: \(\sum_{d|n}\mu(d)=[n=1]\) 证明:我们把n分解质因数,则原式\(=(-1+1)^{\omega(n)}=0\). 因为对于不同的质因子,只有选和不选两种方案,这是一个组合数相加的形式,偶数加奇数减,根据二项式