Newton‘ method 的优缺点

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzE1Mjg5NQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

图片来自百度

时间: 2024-10-31 12:35:47

Newton‘ method 的优缺点的相关文章

matlab Newton method

% Matlab script to illustrate Newton's method % to solve a nonlinear equation % this particular script finds the square root of a number M % (input by the user) % note that the function we are trying to zero is f(x) = x^2 - M. % its derivative is f'(

Supervised Descent Method Face Alignment 代码下载 和 算法研究 之一

1 主要内容: Supervised Descent Method and its Applications to Face Alignment算法研究. 2代码彩蛋:我问了好久,xxiong好心人发给我的,希望能对你们学习有帮助: 低调下载: http://humansensing.cs.cmu.edu/xxiong/mexintraface1.3.1%28release%29.zip. 注意杜绝一切商业用途,如果需要商业用途,请联系作者本人!! 3本文分为几个部分: (1)解决什么问题 (2

Levenberg-Marquardt迭代(LM算法)-改进Newton法

                  1.前言                                    a.对于工程问题,一般描述为:从一些测量值(观测量)x 中估计参数 p?即x = f(p),                                 其中,x为测量值构成的向量,参数p为待求量,为了让模型能适应一般场景,这里p也为向量.                                 这是一个函数求解问题,可以使用Guass-Newton法进行求解,LM算法

模型融合和提升的算法------算法面试题

● bagging和boosting的区别 参考回答: Bagging是从训练集中进行子抽样组成每个基模型所需要的子训练集,然后对所有基模型预测的结果进行综合操作产生最终的预测结果. Boosting中基模型按次序进行训练,而基模型的训练集按照某种策略每次都进行一定的转化,最后以一定的方式将基分类器组合成一个强分类器. Bagging的训练集是在原始集中有放回的选取,而Boosting每轮的训练集不变,只是训练集中的每个样本在分类器中的权重都会发生变化,此权值会根据上一轮的结果进行调整. Bag

西瓜书第三章 线性模型

读书笔记 周志华老师的<机器学习> 因为边看边记,所以写在随笔里,如果涉及版权问题,请您联系我立马删除,[email protected] 3.1 基本形式 给定d个属性描述的示例 x = (x_1;x_2;...;x_3), 其中x_i是X在第i个属性上的取值,线性模型视图学得一个通过属性的线性组合来进行预测的函数,即 f(x) = w_1*x_1 + w_2*x_2 + ... + w_d*x_d + b, 向量形式 其中 w = (w_1;w_2;...;w_d). w直观表达了各属性在

优化算法——拟牛顿法之DFP算法

一.牛顿法 在博文"优化算法--牛顿法(Newton Method)"中介绍了牛顿法的思路,牛顿法具有二阶收敛性,相比较最速下降法,收敛的速度更快.在牛顿法中使用到了函数的二阶导数的信息,对于函数,其中表示向量.在牛顿法的求解过程中,首先是将函数在处展开,展开式为: 其中,,表示的是目标函数在的梯度,是一个向量.,表示的是目标函数在处的Hesse矩阵.省略掉最后面的高阶无穷小项,即为: 上式两边对求导,即为: 在基本牛顿法中,取得最值的点处的导数值为,即上式左侧为.则: 求出其中的:

My Liblinear code

train.c #include <stdio.h> #include <math.h> #include <stdlib.h> #include <string.h> #include <ctype.h> #include <errno.h> #include "linear.h" #include <time.h>//modification #define Malloc(type,n) (type

OpenCASCADE Root-Finding Algorithm

OpenCASCADE Root-Finding Algorithm [email protected] Abstract. A root-finding algorithm is a numerical method, or algorithm, for finding a value x such that f(x)=0, for a given function f. Such an x is called a root of the function f. In OpenCASCADE

待解决的问题

1.SMO算法需要存储核矩阵吗?其他算法了? 2.SVM处理海量数据的困难在哪? 3.SVM对偶问题得到的凸二次规划问题求解可以使用梯度下降.拟牛顿法等方法吗? 参考博客的说法:不论是向量维度大或者是样本量很大的时候,求解这个优化问题难度都不小,于是在解得稀疏性(比如只需要得到支持向量).目标函数的凸性等方面动脑筋,得到一些较有效率的方法,比如SMO(Sequential Minimal Opimisation).梯度下降法.Trust Region Newton Method.Coordina