【死磕Java并发】-----J.U.C之并发工具类:CyclicBarrier

此篇博客所有源码均来自JDK 1.8

CyclicBarrier,一个同步辅助类,在API中是这么介绍的:

它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环 的 barrier。

通俗点讲就是:让一组线程到达一个屏障时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。

实现分析

CyclicBarrier的结构如下:

通过上图我们可以看到CyclicBarrier的内部是使用重入锁ReentrantLock和Condition。它有两个构造函数:

  • CyclicBarrier(int parties):创建一个新的 CyclicBarrier,它将在给定数量的参与者(线程)处于等待状态时启动,但它不会在启动 barrier 时执行预定义的操作。
  • CyclicBarrier(int parties, Runnable barrierAction) :创建一个新的 CyclicBarrier,它将在给定数量的参与者(线程)处于等待状态时启动,并在启动 barrier 时执行给定的屏障操作,该操作由最后一个进入 barrier 的线程执行。

parties表示拦截线程的数量。

barrierAction 为CyclicBarrier接收的Runnable命令,用于在线程到达屏障时,优先执行barrierAction ,用于处理更加复杂的业务场景。

    public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }

    public CyclicBarrier(int parties) {
        this(parties, null);
    }

在CyclicBarrier中最重要的方法莫过于await()方法,在所有参与者都已经在此 barrier 上调用 await 方法之前,将一直等待。如下:

    public int await() throws InterruptedException, BrokenBarrierException {
        try {
            return dowait(false, 0L);//不超时等待
        } catch (TimeoutException toe) {
            throw new Error(toe); // cannot happen
        }
    }

await()方法内部调用dowait(boolean timed, long nanos)方法:

    private int dowait(boolean timed, long nanos)
            throws InterruptedException, BrokenBarrierException,
            TimeoutException {
        //获取锁
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            //分代
            final Generation g = generation;

            //当前generation“已损坏”,抛出BrokenBarrierException异常
            //抛出该异常一般都是某个线程在等待某个处于“断开”状态的CyclicBarrie
            if (g.broken)
                //当某个线程试图等待处于断开状态的 barrier 时,或者 barrier 进入断开状态而线程处于等待状态时,抛出该异常
                throw new BrokenBarrierException();

            //如果线程中断,终止CyclicBarrier
            if (Thread.interrupted()) {
                breakBarrier();
                throw new InterruptedException();
            }

            //进来一个线程 count - 1
            int index = --count;
            //count == 0 表示所有线程均已到位,触发Runnable任务
            if (index == 0) {  // tripped
                boolean ranAction = false;
                try {
                    final Runnable command = barrierCommand;
                    //触发任务
                    if (command != null)
                        command.run();
                    ranAction = true;
                    //唤醒所有等待线程,并更新generation
                    nextGeneration();
                    return 0;
                } finally {
                    if (!ranAction)
                        breakBarrier();
                }
            }

            for (;;) {
                try {
                    //如果不是超时等待,则调用Condition.await()方法等待
                    if (!timed)
                        trip.await();
                    else if (nanos > 0L)
                        //超时等待,调用Condition.awaitNanos()方法等待
                        nanos = trip.awaitNanos(nanos);
                } catch (InterruptedException ie) {
                    if (g == generation && ! g.broken) {
                        breakBarrier();
                        throw ie;
                    } else {
                        // We‘re about to finish waiting even if we had not
                        // been interrupted, so this interrupt is deemed to
                        // "belong" to subsequent execution.
                        Thread.currentThread().interrupt();
                    }
                }

                if (g.broken)
                    throw new BrokenBarrierException();

                //generation已经更新,返回index
                if (g != generation)
                    return index;

                //“超时等待”,并且时间已到,终止CyclicBarrier,并抛出异常
                if (timed && nanos <= 0L) {
                    breakBarrier();
                    throw new TimeoutException();
                }
            }
        } finally {
            //释放锁
            lock.unlock();
        }
    }

其实await()的处理逻辑还是比较简单的:如果该线程不是到达的最后一个线程,则他会一直处于等待状态,除非发生以下情况:

  1. 最后一个线程到达,即index == 0
  2. 超出了指定时间(超时等待)
  3. 其他的某个线程中断当前线程
  4. 其他的某个线程中断另一个等待的线程
  5. 其他的某个线程在等待barrier超时
  6. 其他的某个线程在此barrier调用reset()方法。reset()方法用于将屏障重置为初始状态。

在上面的源代码中,我们可能需要注意Generation 对象,在上述代码中我们总是可以看到抛出BrokenBarrierException异常,那么什么时候抛出异常呢?如果一个线程处于等待状态时,如果其他线程调用reset(),或者调用的barrier原本就是被损坏的,则抛出BrokenBarrierException异常。同时,任何线程在等待时被中断了,则其他所有线程都将抛出BrokenBarrierException异常,并将barrier置于损坏状态。

同时,Generation描述着CyclicBarrier的更显换代。在CyclicBarrier中,同一批线程属于同一代。当有parties个线程到达barrier,generation就会被更新换代。其中broken标识该当前CyclicBarrier是否已经处于中断状态。

    private static class Generation {
        boolean broken = false;
    }

默认barrier是没有损坏的。

当barrier损坏了或者有一个线程中断了,则通过breakBarrier()来终止所有的线程:

    private void breakBarrier() {
        generation.broken = true;
        count = parties;
        trip.signalAll();
    }

在breakBarrier()中除了将broken设置为true,还会调用signalAll将在CyclicBarrier处于等待状态的线程全部唤醒。

当所有线程都已经到达barrier处(index == 0),则会通过nextGeneration()进行更新换地操作,在这个步骤中,做了三件事:唤醒所有线程,重置count,generation。

    private void nextGeneration() {
        trip.signalAll();
        count = parties;
        generation = new Generation();
    }

CyclicBarrier同时也提供了await(long timeout, TimeUnit unit) 方法来做超时控制,内部还是通过调用doawait()实现的。

应用场景

CyclicBarrier试用与多线程结果合并的操作,用于多线程计算数据,最后合并计算结果的应用场景。比如我们需要统计多个Excel中的数据,然后等到一个总结果。我们可以通过多线程处理每一个Excel,执行完成后得到相应的结果,最后通过barrierAction来计算这些线程的计算结果,得到所有Excel的总和。

应用示例

比如我们开会只有等所有的人到齐了才会开会,如下:

public class CyclicBarrierTest {
    private static CyclicBarrier cyclicBarrier;

    static class CyclicBarrierThread extends Thread{
        public void run() {
            System.out.println(Thread.currentThread().getName() + "到了");
            //等待
            try {
                cyclicBarrier.await();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }

    public static void main(String[] args){
        cyclicBarrier = new CyclicBarrier(5, new Runnable() {
            @Override
            public void run() {
                System.out.println("人到齐了,开会吧....");
            }
        });

        for(int i = 0 ; i < 5 ; i++){
            new CyclicBarrierThread().start();
        }
    }
}

运行结果:

时间: 2024-10-12 16:22:27

【死磕Java并发】-----J.U.C之并发工具类:CyclicBarrier的相关文章

【死磕Java并发】-----J.U.C之重入锁:ReentrantLock

此篇博客所有源码均来自JDK 1.8 ReentrantLock,可重入锁,是一种递归无阻塞的同步机制.它可以等同于synchronized的使用,但是ReentrantLock提供了比synchronized更强大.灵活的锁机制,可以减少死锁发生的概率. API介绍如下: 一个可重入的互斥锁定 Lock,它具有与使用 synchronized 方法和语句所访问的隐式监视器锁定相同的一些基本行为和语义,但功能更强大.ReentrantLock 将由最近成功获得锁定,并且还没有释放该锁定的线程所拥

【死磕Java并发】-----J.U.C之AQS:CLH同步队列

此篇博客所有源码均来自JDK 1.8 在上篇博客[死磕Java并发]-–J.U.C之AQS:AQS简介中提到了AQS内部维护着一个FIFO队列,该队列就是CLH同步队列. CLH同步队列是一个FIFO双向队列,AQS依赖它来完成同步状态的管理,当前线程如果获取同步状态失败时,AQS则会将当前线程已经等待状态等信息构造成一个节点(Node)并将其加入到CLH同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点唤醒(公平锁),使其再次尝试获取同步状态. 在CLH同步队列中,一个节点表示一个线程

【死磕Java并发】-----J.U.C之读写锁:ReentrantReadWriteLock

此篇博客所有源码均来自JDK 1.8 重入锁ReentrantLock是排他锁,排他锁在同一时刻仅有一个线程可以进行访问,但是在大多数场景下,大部分时间都是提供读服务,而写服务占有的时间较少.然而读服务不存在数据竞争问题,如果一个线程在读时禁止其他线程读势必会导致性能降低.所以就提供了读写锁. 读写锁维护着一对锁,一个读锁和一个写锁.通过分离读锁和写锁,使得并发性比一般的排他锁有了较大的提升:在同一时间可以允许多个读线程同时访问,但是在写线程访问时,所有读线程和写线程都会被阻塞. 读写锁的主要特

【死磕Java并发】-----Java内存模型之分析volatile

前篇博客[死磕Java并发]-–深入分析volatile的实现原理 中已经阐述了volatile的特性了: volatile可见性:对一个volatile的读,总可以看到对这个变量最终的写: volatile原子性:volatile对单个读/写具有原子性(32位Long.Double),但是复合操作除外,例如i++; JVM底层采用"内存屏障"来实现volatile语义 下面LZ就通过happens-before原则和volatile的内存语义两个方向介绍volatile. volat

死磕 java同步系列之Phaser源码解析

问题 (1)Phaser是什么? (2)Phaser具有哪些特性? (3)Phaser相对于CyclicBarrier和CountDownLatch的优势? 简介 Phaser,翻译为阶段,它适用于这样一种场景,一个大任务可以分为多个阶段完成,且每个阶段的任务可以多个线程并发执行,但是必须上一个阶段的任务都完成了才可以执行下一个阶段的任务. 这种场景虽然使用CyclicBarrier或者CountryDownLatch也可以实现,但是要复杂的多.首先,具体需要多少个阶段是可能会变的,其次,每个阶

死磕 java集合之CopyOnWriteArraySet源码分析——内含巧妙设计

问题 (1)CopyOnWriteArraySet是用Map实现的吗? (2)CopyOnWriteArraySet是有序的吗? (3)CopyOnWriteArraySet是并发安全的吗? (4)CopyOnWriteArraySet以何种方式保证元素不重复? (5)如何比较两个Set中的元素是否完全一致? 简介 CopyOnWriteArraySet底层是使用CopyOnWriteArrayList存储元素的,所以它并不是使用Map来存储元素的. 但是,我们知道CopyOnWriteArra

死磕 java集合之PriorityBlockingQueue源码分析

问题 (1)PriorityBlockingQueue的实现方式? (2)PriorityBlockingQueue是否需要扩容? (3)PriorityBlockingQueue是怎么控制并发安全的? 简介 PriorityBlockingQueue是java并发包下的优先级阻塞队列,它是线程安全的,如果让你来实现你会怎么实现它呢? 还记得我们前面介绍过的PriorityQueue吗?点击链接直达[死磕 java集合之PriorityQueue源码分析] 还记得优先级队列一般使用什么来实现吗?

死磕 java集合之DelayQueue源码分析

问题 (1)DelayQueue是阻塞队列吗? (2)DelayQueue的实现方式? (3)DelayQueue主要用于什么场景? 简介 DelayQueue是java并发包下的延时阻塞队列,常用于实现定时任务. 继承体系 从继承体系可以看到,DelayQueue实现了BlockingQueue,所以它是一个阻塞队列. 另外,DelayQueue还组合了一个叫做Delayed的接口,DelayQueue中存储的所有元素必须实现Delayed接口. 那么,Delayed是什么呢? public

死磕 java集合之终结篇

概览 我们先来看一看java中所有集合的类关系图. 这里面的类太多了,请放大看,如果放大还看不清,请再放大看,如果还是看不清,请放弃. 我们下面主要分成五个部分来逐个击破. List List中的元素是有序的.可重复的,主要实现方式有动态数组和链表. java中提供的List的实现主要有ArrayList.LinkedList.CopyOnWriteArrayList,另外还有两个古老的类Vector和Stack. 关于List相关的问题主要有: (1)ArrayList和LinkedList有

死磕 java并发包之LongAdder源码分析

问题 (1)java8中为什么要新增LongAdder? (2)LongAdder的实现方式? (3)LongAdder与AtomicLong的对比? 简介 LongAdder是java8中新增的原子类,在多线程环境中,它比AtomicLong性能要高出不少,特别是写多的场景. 它是怎么实现的呢?让我们一起来学习吧. 原理 LongAdder的原理是,在最初无竞争时,只更新base的值,当有多线程竞争时通过分段的思想,让不同的线程更新不同的段,最后把这些段相加就得到了完整的LongAdder存储