Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of length n and q questions.
The i-th question is whether P remains balanced after p ai and p bi swapped. Note that questions are individual so that they have no affect on others.
Parenthesis sequence S is balanced if and only if:
1. S is empty;
2. or there exists balanced parenthesis sequence A,B such that S=AB;
3. or there exists balanced parenthesis sequence S‘ such that S=(S‘).
Input
The input contains at most 30 sets. For each set:
The first line contains two integers n,q (2≤n≤10 5,1≤q≤10 5).
The second line contains n characters p 1 p 2…p n.
The i-th of the last q lines contains 2 integers a i,b i (1≤a i,b i≤n,a i≠b i).
Output
For each question, output " Yes" if P remains balanced, or " No" otherwise.
Sample Input
4 2 (()) 1 3 2 3 2 1 () 1 2
Sample Output
No Yes No
題意: 给出一个已经匹配的括号序列,任意的交换两个位置的括号,判断是否匹配,如果匹配输出 Yes 不匹配输出 No。
输入一个n一个m,n表示括号序列的长度,m代表下面给出m种交换方式,对每一种方式进行判断。
思路:
可将该问题分为三类:
1. 若交换的两个位置的括号相同 则可直接输出 Yes;
2.若后面的左括号与前面的右括号交换,则可直接输出Yes. 因为一开始是平衡串, 如果左边的字符‘)‘与右边的‘(‘交换,那么此时交换的两个必能匹配为一对。
3.若后面的右括号与前面的左括号交换,则可根据括号匹配问题进行判断.
代码实现:
#include <iostream> #include <string.h> #include <string> #include <stdio.h> #include <algorithm> #include <stdio.h> #include <stack> using namespace std; char s1[300000]={0}; int main(){ int n,m; while(~scanf("%d%d",&n,&m)){ getchar(); scanf("%s",s1); int a,b; for(int i=1;i<=m;i++){ char c; scanf("%d%d",&a,&b); if(a>b) swap(a,b); if(s1[a-1]==s1[b-1]||s1[b-1]==‘(‘){ //第一种情况与第二种情况 printf("Yes\n"); continue; } swap(s1[a-1],s1[b-1]); int sum = 0; for(int i = 0;i<n;i++){ // 第三种情况的判断 if(s1[i]==‘(‘) sum++; if(s1[i]==‘)‘) sum--; if(sum<0) break; } if(sum==0) printf("Yes\n"); else printf("No\n"); swap(s1[a-1],s1[b-1]); //将字符串还原 } } return 0; }