hdu 5465 Clarke and puzzle(树状数组 或 前缀和 + Nim游戏)


本题可转化为:求一个二维数组 (x1,y1)到(x2,y2) 每个元素的异或值,判断是否为0。

本题的两个相似解法:
1.前缀和
2.树状数组

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
typedef long long ll;
using namespace std;

const int inf=0x3f3f3f3f;
const int maxn=1e6+10;

int a[505][505],c[505][505];
int n,m,q;

int lowbit(int x){
	return x & (-x);
}
int sum(int x,int y){
	int ret=0;
	for(int i=x;i>=1;i -= lowbit(i)){
		for(int j=y;j>=1;j -= lowbit(j)){
			ret ^= c[i][j];
		}
	}
	return ret;
}
void update(int x,int y,int d){
	for(int i=x;i<=n;i+= lowbit(i)){
		for(int j=y;j<=m;j+= lowbit(j)){
			c[i][j] ^= d;
		}
	}
}
bool query(int x1,int y1,int x2,int y2){
	int ret=sum(x2,y2)^sum(x1-1,y2)^sum(x2,y1-1)^sum(x1-1,y1-1);
	return ret;
	return false;
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--){
		memset(c,0,sizeof c);
		scanf("%d %d %d",&n,&m,&q);
		for(int i=1;i<=n;++i){
			for(int j=1;j<=m;++j){
				scanf("%d", &a[i][j]);
				update(i,j,a[i][j]);
			}
		}
		for(int i=0;i<q;++i){
			int cmd;
			scanf("%d",&cmd);
			if(cmd==1){
				int x1,y1,x2,y2;
				scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
				if( query(x1,y1,x2,y2) )printf("Yes\n");
				else printf("No\n");
			}else{
				int x,y,z;
				scanf("%d %d %d",&x,&y,&z);
				update(x,y,z^a[x][y]);
				a[x][y]=z;
			}
		}
	}
	return 0;
}

PS:

Nim游戏是经典的公平组合游戏(ICG),对于ICG游戏我们有如下定义:
1、两名选手;
2、两名选手轮流行动,每一次行动可以在有限合法操作集合中选择一个;
3、游戏的任何一种可能的局面(position),合法操作集合只取决于这个局面本身;局面的改变称为“移动”(move)。
4、若轮到某位选手时,该选手的合法操作集合为空,则这名选手判负。

对于第三条,我们有更进一步的定义Position,我们将Position分为两类:
P-position:在当前的局面下,先手必败。
N-position:在当前的局面下,先手必胜。

他们有如下性质:
1.合法操作集合为空的局面是P-position;
2.可以移动到P-position的局面是N-position;
3.所有移动都只能到N-position的局面是P-position。

在这个游戏中,我们已经知道A[] = {0,0,...,0}的局面是P局面,那么我们可以通过反向枚举来推导出所有的可能局面,总共的状态数量为A[1]*A[2]*...*A[N]。并且每一次的状态转移很多。
虽然耗时巨大,但确实是一个可行方法。

当然,我们这里会讲这个题目就说明肯定没那么复杂。没错,对于这个游戏有一个非常神奇的结论:

对于一个局面,当且仅当A[1] xor A[2] xor ... xor A[N] = 0时,该局面为P局面。

对于这个结论的证明如下:
1. 全0状态为P局面,即A[i]=0,则A[1] xor A[2] xor ... xor A[N] = 0。
2. 从任意一个A[1] xor A[2] xor ... xor A[N] = k != 0的状态可以移动到A[1] xor A[2] xor ... xor A[N] = 0的状态。由于xor计算的特殊性,我们知道一定有一个A[i]最高位与k最高位的1是相同的,那么必然有A[i] xor k < A[i]的,所以我们可以通过改变A[i]的值为A[i]‘,使得A[1] xor A[2] xor ... xor A[i]‘ xor ... xor A[N] = 0。
3. 对于任意一个局面,若A[1] xor A[2] xor ... xor A[N] = 0,则不存在任何一个移动可以使得新的局面A[1] xor A[2] xor ... xor A[N] = 0。由于xor计算的特殊性,我们可以知道,一定是存在偶数个1时该位置的1才会被消除。若只改变一个A[i],无论如何都会使得1的数量发生变化,从而导致A[1] xor A[2] xor ... xor A[N] != 0。
以上三条满足ICG游戏中N,P局面的转移性质,所以该结论的正确性也得到了证明。

时间: 2024-10-08 23:45:36

hdu 5465 Clarke and puzzle(树状数组 或 前缀和 + Nim游戏)的相关文章

[ACM] hdu 5147 Sequence II (树状数组,前缀和,后缀和)

Sequence II Problem Description Long long ago, there is a sequence A with length n. All numbers in this sequence is no smaller than 1 and no bigger than n, and all numbers are different in this sequence. Please calculate how many quad (a,b,c,d) satis

hdu 3015 Disharmony Trees (离散化+树状数组)

Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 663    Accepted Submission(s): 307 Problem Description One day Sophia finds a very big square. There are n trees in the square. T

HDU 2852 KiKi&#39;s K-Number (树状数组 &amp;&amp; 二分)

题意:给出对容器的总操作次数n, 接下来是这n个操作.这里对于一个容器提供三种操作, 分别是插入.删除和查找.输入0  e表示插入e.输入1  e表示删除e,若元素不存在输出No Elment!.输入2  e  k表示查找比e大且第k大的数, 若不存在则输出Not Find! 分析:这里考虑树状数组做的原因是在第三个操作的时候, 只要我们记录了元素的总数, 那通过求和操作, 便能够高效地知道到底有多少个数比现在求和的这个数要大, 例如 tot - sum(3)就能知道整个集合里面比3大的数到底有

HDU 3584 Cube (三维 树状数组)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3584 Cube Problem Description Given an N*N*N cube A, whose elements are either 0 or 1. A[i, j, k] means the number in the i-th row , j-th column and k-th layer. Initially we have A[i, j, k] = 0 (1 <= i, 

HDU 5592 ZYB&#39;s Premutation(树状数组+二分)

题意:给一个排列的每个前缀区间的逆序对数,让还原 原序列. 思路:考虑逆序对的意思,对于k = f[i] - f[i -1],就表示在第i个位置前面有k个比当前位置大的数,那么也就是:除了i后面的数字之外,它是在剩下的数字当中第k+1大的. 知道这个之后,可以用树状数组来帮助找出剩下的数中第k大的数,刚开始我们可以让1-n中每个元素都标记为1,那么他们的前缀和就代表它是第几小.所以,我们可以对于他们的和来二分快速寻找第k大数.其实在树状数组里面是按照第(i-k)小来找的.找完之后要删除这个元素的

hdu 5592 ZYB&#39;s Game 树状数组

ZYB's Game Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5592 Description ZYB has a premutation P,but he only remeber the reverse log of each prefix of the premutation,now he ask you to restore the premutation

HDU 1394 Minimum Inversion Number 树状数组&amp;&amp;线段树

题目给了你一串序列,然后每次 把最后一个数提到最前面来,直到原来的第一个数到了最后一个,每次操作都会产生一个新的序列,这个序列具有一个逆序数的值,问最小的你逆序数的值为多少 逆序数么 最好想到的是树状数组,敲了一把很快,注意把握把最后一个数提上来对逆序数的影响即可, #include<iostream> #include<cstdio> #include<list> #include<algorithm> #include<cstring> #i

HDU 6447 - YJJ&#39;s Salesman - [树状数组优化DP][2018CCPC网络选拔赛第10题]

Problem DescriptionYJJ is a salesman who has traveled through western country. YJJ is always on journey. Either is he at the destination, or on the way to destination.One day, he is going to travel from city A to southeastern city B. Let us assume th

51Nod 1272最大距离 (树状数组维护前缀最小值)

题目链接 最大距离 其实主流解法应该是单调栈--我用了树状数组. 1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 #define rep(i, a, b) for (int i(a); i <= (b); ++i) 6 7 const int N = 100010; 8 9 struct node{ 10 int x, y; 11 friend bool operator < (const node &a, c