原理
Camshift算法是Continuously Adaptive Mean Shift algorithm的简称。它是一个基于MeanSift的改进算法。它首次由Gary R.Bradski等人提出和应用在人脸的跟踪上,并取得了不错的效果。由于它是利用颜色的概率信息进行的跟踪,使得它的运行效率比较高。 Camshift算法的过程由下面步骤组成:
(1)确定初始目标及其区域;
(2)计算出目标的色度(Hue)分量的直方图;
(3)利用直方图计算输入图像的反向投影图(后面做进一步的解释);
(4)利用MeanShift算法在反向投影图中迭代收索,直到其收敛或达到最大迭代次数。并保存零次矩;
(5)从第(4)步中获得收索窗口的中心位置和计算出新的窗口大小,以此为参数,进入到下一幀的目标跟踪。(即跳转到第(2)步);
代码
#include "stdafx.h" #include "opencv2/video/tracking.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> #include <ctype.h> using namespace cv; using namespace std; Mat image; bool backprojMode = false; bool selectObject = false; int trackObject = 0; bool showHist = true; Point origin; Rect selection(0,0,50,50); static void onMouse( int event, int x, int y, int, void* ) { switch( event ) { case CV_EVENT_LBUTTONDOWN: origin = Point(x,y); selection = Rect(x,y,0,0); selectObject = true; break; case CV_EVENT_LBUTTONUP: selectObject = false; if( selection.width > 0 && selection.height > 0 ) trackObject = -1; break; } if( selectObject ) { selection.x = MIN(x, origin.x); selection.y = MIN(y, origin.y); selection.width = std::abs(x - origin.x); selection.height = std::abs(y - origin.y); } } int main( int argc, const char** argv ) { cv::VideoCapture capture(0); capture.set( CV_CAP_PROP_FRAME_WIDTH,640); capture.set( CV_CAP_PROP_FRAME_HEIGHT,480 ); if(!capture.isOpened()) return -1; double rate = capture.get(CV_CAP_PROP_FPS); //获取帧率 int delay = 1000 / rate; //计算帧间延迟; Mat frame,image,hsv,mask,hue; namedWindow("test",CV_WINDOW_AUTOSIZE); setMouseCallback("test",onMouse,0); while (1) { capture>>frame; if(trackObject == -1){ //设置完检测的对象后开始跟踪 frame.copyTo(image); cv::cvtColor(image,hsv,CV_RGB2HSV); cv::inRange(hsv,Scalar(0,130,50),Scalar(180,256,256),mask); //去掉低饱和度的点 vector<cv::Mat> v; cv::split(hsv,v); //hsv的三个通道分开 hue = v[1]; cv::Mat ROI = hue(selection); //选择感兴趣的区域 cv::Mat maskROI = mask(selection); cv::MatND hist; int histsize[1]; histsize[0]= 16; float hranges[2]; hranges[0] = 0; hranges[1] = 180; const float *ranges[1]; ranges[0] = hranges; cv::calcHist(&ROI,1,0,maskROI,hist,1,histsize,ranges);//感兴趣区域的直方图,从参数太多 cv::normalize(hist,hist,0,180,CV_MINMAX); //对直方图进行归一化处理; cv::Mat backpro; cv::calcBackProject(&hue,1,0,hist,backpro,ranges); //对h通道的进行反投影放入backpro中 backpro &= mask; cv::RotatedRect trackBox = cv::CamShift(backpro,selection, TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER,10,1));//使用均值秒一算法找出RECT; cv::ellipse(frame,trackBox,cv::Scalar(0,0,255),2,CV_AA); } cv::imshow("test",frame); if(waitKey(30) >= 0) break; } capture.release(); return 0; }
效果
用摄像头获取视频
直接读取视频
总结:
效果不是太好,可能是没有预处理或者参数设置的不好。
初学者,期待大婶知道!
用Camshift算法对指定目标进行跟踪
时间: 2024-10-05 14:14:27