【011-ContainerWithMostWater(容纳最多的水)】
【LeetCode-面试算法经典-Java实现】【所有题目目录索引】
原题
Given n non-negative integers a1, a2, …, an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
题目大意
找两条竖线然后这两条线以及X轴构成的容器能容纳最多的水。
解题思路
使用贪心算法
1.首先假设我们找到能取最大容积的纵线为 i, j (假定i < j),那么得到的最大容积 C = min( ai , aj ) * ( j- i) ;
2.下面我们看这么一条性质:
①: 在 j 的右端没有一条线会比它高!假设存在 k |( j < k && ak > aj) ,那么 由 ak > aj,所以 min(ai, aj, ak) =min(ai, aj) ,所以由i, k构成的容器的容积C’ = min(ai, aj) * (k - i) > C,与C是最值矛盾,所以得证j的后边不会有比它还高的线;
②:同理,在i的左边也不会有比它高的线;这说明什么呢?如果我们目前得到的候选: 设为 x, y两条线(x< y),那么能够得到比它更大容积的新的两条边必然在[x, y]区间内并且 ax’ >= ax , ay’ >= ay;
3.所以我们从两头向中间靠拢,同时更新候选值;在收缩区间的时候优先从x, y中较小的边开始收缩;
代码实现
public class Solution {
public int maxArea(int[] height) {
// 参数校验
if (height == null || height.length < 2) {
return 0;
}
// 记录最大的结果
int result = 0;
// 左边的竖线
int left = 0;
// 右边的竖线
int right = height.length - 1;
while (left < right) {
// 设算当前的最大值
result = Math.max(result, Math.min(height[left], height[right]) * (right - left));
// 如果右边线高
if (height[left] < height[right]) {
int k = left;
// 从[left, right - 1]中,从左向右找,找第一个高度比height[left]高的位置
while (k < right && height[k] <= height[left]) {
k++;
}
// 从[left, right - 1]中,记录第一个比原来height[left]高的位置
left = k;
}
// 左边的线高
else {
int k = right;
// 从[left + 1, right]中,从右向左找,找第一个高度比height[right]高的位置
while (k > left && height[k] <= height[right]) {
k--;
}
// 从[left, right - 1]中,记录第一个比原来height[right]高的位置
right = k;
}
}
return result;
}
}
评测结果
点击图片,鼠标不释放,拖动一段位置,释放后在新的窗口中查看完整图片。
特别说明
欢迎转载,转载请注明出处【http://blog.csdn.net/derrantcm/article/details/46951851】
版权声明:本文为博主原创文章,未经博主允许不得转载。