NIO---2

package com.atguigu.nio;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.nio.channels.SeekableByteChannel;
import java.nio.file.DirectoryStream;
import java.nio.file.Files;
import java.nio.file.LinkOption;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardCopyOption;
import java.nio.file.StandardOpenOption;
import java.nio.file.attribute.BasicFileAttributes;
import java.nio.file.attribute.DosFileAttributeView;

import org.junit.Test;

public class TestNIO_2 {

//自动资源管理:自动关闭实现 AutoCloseable 接口的资源
@Test
public void test8(){
try(FileChannel inChannel = FileChannel.open(Paths.get("1.jpg"), StandardOpenOption.READ);
FileChannel outChannel = FileChannel.open(Paths.get("2.jpg"), StandardOpenOption.WRITE, StandardOpenOption.CREATE)){

ByteBuffer buf = ByteBuffer.allocate(1024);
inChannel.read(buf);

}catch(IOException e){

}
}

/*
Files常用方法:用于操作内容
SeekableByteChannel newByteChannel(Path path, OpenOption…how) : 获取与指定文件的连接,how 指定打开方式。
DirectoryStream newDirectoryStream(Path path) : 打开 path 指定的目录
InputStream newInputStream(Path path, OpenOption…how):获取 InputStream 对象
OutputStream newOutputStream(Path path, OpenOption…how) : 获取 OutputStream 对象
*/
@Test
public void test7() throws IOException{
SeekableByteChannel newByteChannel = Files.newByteChannel(Paths.get("1.jpg"), StandardOpenOption.READ);

DirectoryStream<Path> newDirectoryStream = Files.newDirectoryStream(Paths.get("e:/"));

for (Path path : newDirectoryStream) {
System.out.println(path);
}
}

/*
Files常用方法:用于判断
boolean exists(Path path, LinkOption … opts) : 判断文件是否存在
boolean isDirectory(Path path, LinkOption … opts) : 判断是否是目录
boolean isExecutable(Path path) : 判断是否是可执行文件
boolean isHidden(Path path) : 判断是否是隐藏文件
boolean isReadable(Path path) : 判断文件是否可读
boolean isWritable(Path path) : 判断文件是否可写
boolean notExists(Path path, LinkOption … opts) : 判断文件是否不存在
public static <A extends BasicFileAttributes> A readAttributes(Path path,Class<A> type,LinkOption... options) : 获取与 path 指定的文件相关联的属性。
*/
@Test
public void test6() throws IOException{
Path path = Paths.get("e:/nio/hello7.txt");
// System.out.println(Files.exists(path, LinkOption.NOFOLLOW_LINKS));

BasicFileAttributes readAttributes = Files.readAttributes(path, BasicFileAttributes.class, LinkOption.NOFOLLOW_LINKS);
System.out.println(readAttributes.creationTime());
System.out.println(readAttributes.lastModifiedTime());

DosFileAttributeView fileAttributeView = Files.getFileAttributeView(path, DosFileAttributeView.class, LinkOption.NOFOLLOW_LINKS);

fileAttributeView.setHidden(false);
}

/*
Files常用方法:
Path copy(Path src, Path dest, CopyOption … how) : 文件的复制
Path createDirectory(Path path, FileAttribute<?> … attr) : 创建一个目录
Path createFile(Path path, FileAttribute<?> … arr) : 创建一个文件
void delete(Path path) : 删除一个文件
Path move(Path src, Path dest, CopyOption…how) : 将 src 移动到 dest 位置
long size(Path path) : 返回 path 指定文件的大小
*/
@Test
public void test5() throws IOException{
Path path1 = Paths.get("e:/nio/hello2.txt");
Path path2 = Paths.get("e:/nio/hello7.txt");

System.out.println(Files.size(path2));

// Files.move(path1, path2, StandardCopyOption.ATOMIC_MOVE);
}

@Test
public void test4() throws IOException{
Path dir = Paths.get("e:/nio/nio2");
// Files.createDirectory(dir);

Path file = Paths.get("e:/nio/nio2/hello3.txt");
// Files.createFile(file);

Files.deleteIfExists(file);
}

@Test
public void test3() throws IOException{
Path path1 = Paths.get("e:/nio/hello.txt");
Path path2 = Paths.get("e:/nio/hello2.txt");

Files.copy(path1, path2, StandardCopyOption.REPLACE_EXISTING);
}

/*
Paths 提供的 get() 方法用来获取 Path 对象:
Path get(String first, String … more) : 用于将多个字符串串连成路径。
Path 常用方法:
boolean endsWith(String path) : 判断是否以 path 路径结束
boolean startsWith(String path) : 判断是否以 path 路径开始
boolean isAbsolute() : 判断是否是绝对路径
Path getFileName() : 返回与调用 Path 对象关联的文件名
Path getName(int idx) : 返回的指定索引位置 idx 的路径名称
int getNameCount() : 返回Path 根目录后面元素的数量
Path getParent() :返回Path对象包含整个路径,不包含 Path 对象指定的文件路径
Path getRoot() :返回调用 Path 对象的根路径
Path resolve(Path p) :将相对路径解析为绝对路径
Path toAbsolutePath() : 作为绝对路径返回调用 Path 对象
String toString() : 返回调用 Path 对象的字符串表示形式
*/
@Test
public void test2(){
Path path = Paths.get("e:/nio/hello.txt");

System.out.println(path.getParent());
System.out.println(path.getRoot());

// Path newPath = path.resolve("e:/hello.txt");
// System.out.println(newPath);

Path path2 = Paths.get("1.jpg");
Path newPath = path2.toAbsolutePath();
System.out.println(newPath);

System.out.println(path.toString());
}

@Test
public void test1(){
Path path = Paths.get("e:/", "nio/hello.txt");

System.out.println(path.endsWith("hello.txt"));
System.out.println(path.startsWith("e:/"));

System.out.println(path.isAbsolute());
System.out.println(path.getFileName());

for (int i = 0; i < path.getNameCount(); i++) {
System.out.println(path.getName(i));
}
}
}

时间: 2024-10-20 10:34:49

NIO---2的相关文章

下载-深入浅出Netty源码剖析、Netty实战高性能分布式RPC、NIO+Netty5各种RPC架构实战演练三部曲视频教程

下载-深入浅出Netty源码剖析.Netty实战高性能分布式RPC.NIO+Netty5各种RPC架构实战演练三部曲视频教程 第一部分:入浅出Netty源码剖析 第二部分:Netty实战高性能分布式RPC 第三部分:NIO+Netty5各种RPC架构实战演练

Java NIO (五) 管道 (Pipe)

Java NIO 管道是2个线程之间的单向数据连接.Pipe有一个source通道和一个sink通道.数据会被写到sink通道,从source通道读取. 如下图: 向管道写数据: 从管道读数据: 1. 从读取管道的数据,需要访问source通道. 2. 调用source通道的read()方法来读取数据

Java NIO实现非阻塞式socket通信

博主知识水平有限,只能提供一个个人的狭隘的理解,如果有新人读到这儿,建议看一下其他教程或者API,如果不明白,再来看一下:如果有dalao读到这儿,希望能指出理解中的问题~谢谢 Java提供了用于网络通信的socket和serversocket包,然而实现方式是阻塞式的,同一时间点上只能进行一个连接,这会带来不好的体验.当然了,我们也可以通过不断创建线程的方式管理连接,但线程多了的话反而会降低效率.于是Java推出了非阻塞式IO--channel.并且channel提供关于网络通信的相关chan

Java NIO中的缓冲区Buffer(一)缓冲区基础

什么是缓冲区(Buffer) 定义 简单地说就是一块存储区域,哈哈哈,可能太简单了,或者可以换种说法,从代码的角度来讲(可以查看JDK中Buffer.ByteBuffer.DoubleBuffer等的源码),Buffer类内部其实就是一个基本数据类型的数组,以及对这个缓冲数组的各种操作: 常见的缓冲区如ByteBuffer.IntBuffer.DoubleBuffer...内部对应的数组依次是byte.int.double... 与通道的关系 在Java NIO中,缓冲区主要是跟通道(Chann

基于NIO的消息路由的实现(四) 服务端通讯主线程(2)断包和粘包的处理

本来我打算单独开一章,专门说明粘包和断包,但是觉得这个事儿我在做的时候挺头疼的,但是对于别人或许不那么重要,于是就在这里写吧. 那么何谓粘包.何谓断包呢? 粘包:我们知道客户端在写入报文给服务端的时候,首先要将需要写入的内容写入Buffer,以ByteBuffer为例,如果你Buffer定义的足够大,并且你发送的报文足够快,此时就会产生粘包现象,举例来说 你发送一个 报文" M|A",然后你有发送了一个"M|B",如果产生粘包,服务端从缓冲区里面读出的就是"

Java NIO通信框架在电信领域的实践

Java NIO通信框架在电信领域的实践 此文配图有错,华为电信软件V1版逻辑架构图与华为电信软件V2 MVC版逻辑架构图两张配图是同一张啊 另:我觉得作者在本文中遇到由于同步io引起的历史遗留问题更多的是架构的问题,在作架构时就需要考虑到同步io引起的阻塞问题,我觉得比较好的解决方案是使用排队的方式来下发请求,而不是每次下发请求都启一个线程,这样如果对方还是响应慢的话即使是用nio也是解决不了问题的.

关于BIO和NIO的理解

最近大概看了ZooKeeper和Mina的源码发现都是用Java NIO实现的,所以有必要搞清楚什么是NIO.下面是我结合网络资料自己总结的,为了节约时间图示随便画的,能达意就行. 简介: BIO:同步阻塞式IO,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可以通过线程池机制改善. NIO:同步非阻塞式IO,服务器实现模式为一个请求一个线程,即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮

java nio

NIO 是java nonblocking(非阻塞) IO 的简称,在jdk1.4 里提供的新api .Sun 官方标榜的特性如下: 为所有的原始类型提供(Buffer)缓存支持.字符集编码解码解决方案. Channel :一个新的原始I/O 抽象. 支持锁和内存映射文件的文件访问接口. 提供多路(non-bloking) 非阻塞式的高伸缩性网络I/O . Java NIO非堵塞应用通常适用用在I/O读写等方面,我们知道,系统运行的性能瓶颈通常在I/O读写,包括对端口和文件的操作上,之前,在打开

tomcat 、NIO、netty 本质

tomcat 基于 web 浏览器的通信容器 nio 同步非阻塞的I/O模型 netty 通信框架,对 nio 的封装

Java 网络IO编程总结(BIO、NIO、AIO均含完整实例代码)

转载请注明出处:http://blog.csdn.net/anxpp/article/details/51512200,谢谢! 本文会从传统的BIO到NIO再到AIO自浅至深介绍,并附上完整的代码讲解. 下面代码中会使用这样一个例子:客户端发送一段算式的字符串到服务器,服务器计算后返回结果到客户端. 代码的所有说明,都直接作为注释,嵌入到代码中,看代码时就能更容易理解,代码中会用到一个计算结果的工具类,见文章代码部分. 相关的基础知识文章推荐: Linux 网络 I/O 模型简介(图文) Jav