The binomial coefficient C(m,n) is defined as
m! C(m,n) = -------- n!(m-n)!
Given four natural numbers p, q, r, and s, compute the the result of dividing
C(p,q) by C(r,s).
The Input
Input consists of a sequence of lines. Each line contains four non-negative integer numbers giving values for
p, q, r, and s, respectively, separated by a single space. All the numbers will be smaller than 10,000 with
p>=q and r>=s.
The Output
For each line of input, print a single line containing a real number with 5 digits of precision in the fraction, giving the number as described above. You may assume the result is not greater than 100,000,000.
Sample Input
10 5 14 9 93 45 84 59 145 95 143 92 995 487 996 488 2000 1000 1999 999 9998 4999 9996 4998
Output for Sample Input
0.12587 505606.46055 1.28223 0.48996 2.00000 3.99960
唯一分解定理:
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<limits.h> #include<vector> #include<cmath> typedef long long LL; typedef unsigned long long ULL; using namespace std; const int maxn=10005; int e[maxn]; int p,q,r,s; int visit[maxn]; vector<int>prime; void is_prime(int n) { int m=sqrt(n+0.5); memset(visit,0,sizeof(visit)); for(int i=2;i<=m;i++) { for(int j=i*i;j<=n;j+=i) visit[j]=1; } } void get_prime(int n) { for(int i=2;i<=n;i++) { if(!visit[i]) prime.push_back(i); } } void add_integer(int n,int d) { for(int i=0;i<prime.size();i++) { while(n%prime[i]==0) { n/=prime[i]; e[i]+=d; } if(n==1) break; } } void add_factorial(int n,int d) { for(int i=1;i<=n;i++) add_integer(i,d); } int main() { is_prime(maxn-1); get_prime(maxn-1); while(cin>>p>>q>>r>>s) { memset(e,0,sizeof(e)); add_factorial(p,1); add_factorial(q,-1); add_factorial(p-q,-1); add_factorial(r,-1); add_factorial(s,1); add_factorial(r-s,1); double ans=1.0; for(int i=0;i<prime.size();i++) ans*=pow(prime[i],e[i]); printf("%.5f\n",ans); } return 0; }还有一种方法:
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<limits.h> typedef long long LL; typedef unsigned long long ULL; using namespace std; int p,q,r,s; int main() { while(~scanf("%d%d%d%d",&p,&q,&r,&s)) { if(p-q<q)//q和p-q中较大值的阶乘和p的阶乘消去 q=p-q; if(r-s<s) s=r-s; double ans=1.0; for(int i=1;i<=q||i<=s;i++) { if(i<=q) ans=ans*(p-q+i)/i; if(i<=s) ans=ans/(r-s+i)*i; } printf("%.5f\n",ans); } return 0; }
UVA 10375 Choose and divide(数论),布布扣,bubuko.com
时间: 2024-10-10 11:10:28