java内存模型详解

内存模型 (memory model) 
内存模型描述的是程序中各变量(实例域、静态域和数组元素)之间的关系,以及在实际计算机系统中将变量存储到内存和从内存取出变量这样的低层细节.

不同平台间的处理器架构将直接影响内存模型的结构.

在C或C++中, 可以利用不同操作平台下的内存模型来编写并发程序. 但是, 这带给开发人员的是, 更高的学习成本.
相比之下, java利用了自身虚拟机的优势, 使内存模型不束缚于具体的处理器架构, 真正实现了跨平台.
(针对hotspot jvm, jrockit等不同的jvm, 内存模型也会不相同)

内存模型的特征: 
a, Visibility 可视性 (多核,多线程间数据的共享)
b, Ordering 有序性 (对内存进行的操作应该是有序的)

java 内存模型 ( java memory model )
根据Java Language Specification中的说明, jvm系统中存在一个主内存(Main Memory或Java Heap Memory),Java中所有变量都储存在主存中,对于所有线程都是共享的。

每条线程都有自己的工作内存(Working Memory),工作内存中保存的是主存中某些变量的拷贝,线程对所有变量的操作都是在工作内存中进行,线程之间无法相互直接访问,变量传递均需要通过主存完成。

其中, 工作内存里的变量, 在多核处理器下, 将大部分储存于处理器高速缓存中, 高速缓存在不经过内存时, 也是不可见的.

jmm怎么体现 可视性(Visibility) ? 
在jmm中, 通过并发线程修改变量值, 必须将线程变量同步回主存后, 其他线程才能访问到.

jmm怎么体现 有序性(Ordering) ? 
通过java提供的同步机制或volatile关键字, 来保证内存的访问顺序.

缓存一致性(cache coherency)

什么是缓存一致性? 
它是一种管理多处理器系统的高速缓存区结构,其可以保证数据在高速缓存区到内存的传输中不会丢失或重复。(来自wikipedia)

举例理解:
假如有一个处理器有一个更新了的变量值位于其缓存中,但还没有被写入主内存,这样别的处理器就可能会看不到这个更新的值.

解决缓存一致性的方法? 
a, 顺序一致性模型:
要求某处理器对所改变的变量值立即进行传播, 并确保该值被所有处理器接受后, 才能继续执行其他指令.

b, 释放一致性模型: (类似jmm cache coherency)
允许处理器将改变的变量值延迟到释放锁时才进行传播.

jmm缓存一致性模型 – “happens-before ordering(先行发生排序)”

一般情况下的示例程序:

x = 0;
y = 0;
i = 0;
j = 0;

// thread A
y = 1;
x = 1;

// thread B
i = x;
j = y;

在如上程序中, 如果线程A,B在无保障情况下运行, 那么i,j各会是什么值呢?

答案是, 不确定. (00,01,10,11都有可能出现)
这里没有使用java同步机制, 所以 jmm 有序性和可视性 都无法得到保障.

happens-before ordering( 先行发生排序) 如何避免这种情况?
排序原则已经做到:
a, 在程序顺序中, 线程中的每一个操作, 发生在当前操作后面将要出现的每一个操作之前.
b, 对象监视器的解锁发生在等待获取对象锁的线程之前.
c, 对volitile关键字修饰的变量写入操作, 发生在对该变量的读取之前.
d, 对一个线程的 Thread.start() 调用 发生在启动的线程中的所有操作之前.
e, 线程中的所有操作 发生在从这个线程的 Thread.join()成功返回的所有其他线程之前.

为了实现 happends-before ordering原则, java及jdk提供的工具:
a, synchronized关键字
b, volatile关键字
c, final变量
d, java.util.concurrent.locks包(since jdk 1.5)
e, java.util.concurrent.atmoic包(since jdk 1.5)

使用了happens-before ordering的例子:

(1) 获取对象监视器的锁(lock)

(2) 清空工作内存数据, 从主存复制变量到当前工作内存, 即同步数据 (read and load)

(3) 执行代码,改变共享变量值 (use and assign)

(4) 将工作内存数据刷回主存 (store and write)

(5) 释放对象监视器的锁 (unlock)

注意: 其中4,5两步是同时进行的.

这边最核心的就是第二步, 他同步了主内存,即前一个线程对变量改动的结果,可以被当前线程获知!(利用了happens-before ordering原则)

对比之前的例子
如果多个线程同时执行一段未经锁保护的代码段,很有可能某条线程已经改动了变量的值,但是其他线程却无法看到这个改动,依然在旧的变量值上进行运算,最终导致不可预料的运算结果。

经典j2ee设计模式Double-Checked Locking失效问题 
双重检查锁定失效问题,一直是JMM无法避免的缺陷之一.了解DCL失效问题, 可以帮助我们深入JMM运行原理.

要展示DCL失效问题, 首先要理解一个重要概念- 延迟加载(lazy loading).

非单例的单线程延迟加载示例:

class Foo
{
     private Resource res = null;
     public Resource getResource()
     {
         // 普通的延迟加载
          if (res == null)
             res = new Resource();
     return res;
     }
}

非单例的 多线程延迟加载示例:

Class Foo
{
     Private Resource res = null;
     Public synchronized Resource getResource()
     {
           // 获取实例操作使用同步方式, 性能不高
          If (res == null) res = new Resource();
          return res;
     }
}

非单例的 DCL多线程延迟加载示例:

Class Foo
{
     Private Resource res = null;
     Public Resource getResource()
     {
          If (res == null)
          {
            //只有在第一次初始化时,才使用同步方式.
               synchronized(this)
          {
          if(res == null)
          {
               res = new Resource();
          }
          return res;
     }
}

Double-Checked Locking看起来是非常完美的。但是很遗憾,根据Java的语言规范,上面的代码是不可靠的。

出现上述问题, 最重要的2个原因如下:
1, 编译器优化了程序指令, 以加快cpu处理速度.
2, 多核cpu动态调整指令顺序, 以加快并行运算能力.

问题出现的顺序:
1, 线程A, 发现对象未实例化, 准备开始实例化
2, 由于编译器优化了程序指令, 允许对象在构造函数未调用完前, 将 共享变量的引用指向 部分构造的对象, 虽然对象未完全实例化, 但已经不为null了.
3, 线程B, 发现部分构造的对象已不是null, 则直接返回了该对象.

不过, 一些著名的开源框架, 包括jive,lenya等也都在使用DCL模式, 且未见一些极端异常.
说明, DCL失效问题的出现率还是比较低的.
接下来就是性能与稳定之间的选择了?

DCL的替代 Initialize-On-Demand :

public class Foo {
    // 似有静态内部类, 只有当有引用时, 该类才会被装载
    private static class LazyFoo {
       public static Foo foo = new Foo();
    }

    public static Foo getInstance() {
       return LazyFoo.foo;
    }
}

维基百科的DCL解释:

http://en.wikipedia.org/wiki/Double-checked_locking

DCL的完美解决方案:

http://www.theserverside.com/patterns/thread.tss?thread_id=39606

总结:
多线程编程, 针对有写操作的变量, 必须 保证其所有引用点与主存中数据一致(考虑采用同步或volatile) .

时间: 2024-08-05 12:34:58

java内存模型详解的相关文章

7.Java内存模型详解

https://blog.csdn.net/qq_37141773/article/details/103138476 一.虚拟机 同样的java代码在不同平台生成的机器码肯定是不一样的,因为不同的操作系统底层的硬件指令集是不同的. 同一个java代码在windows上生成的机器码可能是0101.......,在linux上生成的可能是1100......,那么这是怎么实现的呢? 不知道同学们还记不记得,在下载jdk的时候,我们在oracle官网,基于不同的操作系统或者位数版本要下载不同的jdk

java内存泄露详解

很多人有疑问,java有很好的垃圾回收机制,怎么会有内存泄露?其实是有的,那么何为内存泄露?在Java中所谓内存泄露就是指在程序运行的过程中产生了一些对象,当不需要这些对象时,他们却没有被垃圾回收掉,而且程序运行中很难发现这个对象,它始终占据着内存却没有发挥作用. 我举这样一个例子,在现实开发中我们需要自定义一个先进后出的栈集合,代码如下: 这个代码看起来和运行起来都没问题,但是,这里有个很隐晦的问题,就是在pop()方法里面,我们首先找到集合最后一个元素的下标,然后按照下标从集合中取出,但是这

Java虚拟机:内存模型详解

版权声明:本文为博主原创文章,转载请注明出处,欢迎交流学习! 我们都知道,当虚拟机执行Java代码的时候,首先要把字节码文件加载到内存,那么这些类的信息都存放在内存中的哪个区域呢?当我们创建一个对象实例的时候,虚拟机要为对象分配内存,Java虚拟机又是如何配分内存的呢?这些都涉及到Java虚拟机的内存划分机制,今天我们就来探究一下Java虚拟机的内存模型. Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域,这些区域都有各自的用途以及创建和销毁的时间,有的区域随

Java 内存区域详解

引言 学习Java也有一段时间了,总感觉有些东西学的不是很精通.例如Java内存区域到底是怎么样的?程序是怎么跑的?对象是怎么存放的?这些都影响了我对自己的代码的熟悉程度. 一 运行时数据区域 Java虚拟机在执行java程序的过程中,会把它所管理的内存划分成若干个不同的数据区域(每当运行一个java程序都会启动一个虚拟机).有一本书叫做<Java虚拟机规范>,讲述了Sun公司对Java虚拟机实现的相关规范,其中讲了虚拟机将所管理的内存分为以下几个部分: 程序计数器 虚拟机栈 本地方法区 堆

[转]Java内存溢出详解及解决方案

原文地址:http://blog.csdn.net/xianmiao2009/article/details/49254391 内存溢出与数据库锁表的问题,可以说是开发人员的噩梦,一般的程序异常,总是可以知道在什么时候或是在什么操作步骤上出现了异常,而且根据堆栈信息也很容易定位到程序中是某处出现了问题.内存溢出与锁表则不然,一般现象是操作一般时间后系统越来越慢,直到死机,但并不能明确是在什么操作上出现的,发生的时间点也没有规律,查看日志或查看数据库也不能定位出问题的代码. 更严重的是内存溢出与数

JVM内存模型详解

JVM内存模型也叫JVM运行时区域,是认识和了解JVM工作原理的基础,从java诞生以来,JVM内存模型基本保持着大同小异的整体形态,由此可见JVM内存模型是相当稳定的,直到jdk1.8之后JVM内存模型中才将permGen(永生代),也就是过去的方法区完全去除,使用metaspace取而代之,但是从整个JVM内存形态来说其实并没有产生太大的变化,有点"换汤不换药"的味道.除此之外JVM内存模型的设计原理也充分考虑了java程序的运行过程以及GC的策略,所以JVM内存模型是一个既基础又

Spark内存模型详解

1 堆内和堆外内存规划 Spark执行器(Executor)的内存管理建立在 JVM 的内存管理之上,Spark 对 JVM 的空间(OnHeap+Off-heap)进行了更为详细的分配,以充分利用内存.同时,Spark 引入了Off-heap 内存模式,使之可以直接在工作节点的系统内存中开辟空间,进一步优化了内存的使用(可以理解为是独立于JVM托管的Heap之外利用c-style的malloc从os分配到的memory.由于不再由JVM托管,通过高效的内存管理,可以避免JVM object o

java内存空间详解

Java内存分配与管理是Java的核心技术之一,之前我们曾介绍过Java的内存管理与内存泄露以及Java垃圾回收方面的知识,今天我们再次深入Java核心,详细介绍一下Java在内存分配方面的知识.一般Java在内存分配时会涉及到以下区域: ◆寄存器:我们在程序中无法控制 ◆栈:存放基本类型的数据和对象的引用,但对象本身不存放在栈中,而是存放在堆中 ◆堆:存放用new产生的数据 ◆静态域:存放在对象中用static定义的静态成员 ◆常量池:存放常量 ◆非RAM存储:硬盘等永久存储空间 Java内存

Java内存溢出详解

一.常见的Java内存溢出有以下三种: 1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存.可以利用JVM提供的-Xmn -Xms -Xmx等选项可进行设置.Heap的大小是Young Generation 和Tenured Generaion 之和.在JVM中如果98%的时间是用于GC,