POJ1316 Self Numbers

简单水题,不用打表,算出1~10000的self number,运用数组下标即可。

Self Numbers

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 21721   Accepted: 12231

Description

In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence

33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ... 
The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97.

Input

No input for this problem.

Output

Write a program to output all positive self-numbers less than 10000 in increasing order, one per line.

Sample Input


Sample Output

1
3
5
7
9
20
31
42
53
64
 |
 |       <-- a lot more numbers
 |
9903
9914
9925
9927
9938
9949
9960
9971
9982
9993

Source

Mid-Central USA 1998

 1 //oimonster
 2 #include<cstdio>
 3 #include<cstdlib>
 4 #include<iostream>
 5 using namespace std;
 6 int a[20001];
 7 int count(int i){
 8     int p=i;
 9     int s=i;
10     while(p>0){
11         s=s+p%10;
12         p/=10;
13     }
14     return s;
15 }
16 int main(){
17     int i,j,n;
18     for(i=1;i<=20000;i++)a[i]=0;
19     for(i=1;i<=10000;i++){
20         a[count(i)]=1;
21     }
22     for(i=1;i<=10000;i++){
23         if(a[i]==0)printf("%d\n",i);
24     }
25     return 0;
26 }

时间: 2024-10-12 04:03:04

POJ1316 Self Numbers的相关文章

LeetCode OJ - Sum Root to Leaf Numbers

这道题也很简单,只要把二叉树按照宽度优先的策略遍历一遍,就可以解决问题,采用递归方法越是简单. 下面是AC代码: 1 /** 2 * Sum Root to Leaf Numbers 3 * 采用递归的方法,宽度遍历 4 */ 5 int result=0; 6 public int sumNumbers(TreeNode root){ 7 8 bFSearch(root,0); 9 return result; 10 } 11 private void bFSearch(TreeNode ro

129. Sum Root to Leaf Numbers

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number. An example is the root-to-leaf path 1->2->3 which represents the number 123. Find the total sum of all root-to-leaf numbers. For example, 1 / 2 3 T

421. Maximum XOR of Two Numbers in an Array

Given a non-empty array of numbers, a0, a1, a2, - , an-1, where 0 ≤ ai < 231. Find the maximum result of ai XOR aj, where 0 ≤ i, j < n. Could you do this in O(n) runtime? Example: Input: [3, 10, 5, 25, 2, 8] Output: 28 Explanation: The maximum resul

Humble Numbers(丑数) 超详解!

给定一个素数集合 S = { p[1],p[2],...,p[k] },大于 1 且素因子都属于 S 的数我们成为丑数(Humble Numbers or Ugly Numbers),记第 n 大的丑数为 h[n]. 算法 1: 一种最容易想到的方法当然就是从 2 开始一个一个的判断一个数是否为丑数.这种方法的复杂度约为 O( k * h[n]),铁定超时(如果你这样做而没有超时,请跟 tenshi 联系) 算法 2: 看来只有一个一个地主动生成丑数了 : 我最早做这题的时候,用的是一种比较烂的

【Scala】Scala之Numbers

一.前言 前面已经学习了Scala中的String,接着学习Scala的Numbers. 二.Numbers 在Scala中,所有的数字类型,如Byte,Char,Double,Float,Int,Long,Short都是对象,这七种数字类型继承AnyVal特质,这七种数字类型与其在Java中有相同的范围,而Unit和Boolean则被认为是非数字值类型,Boolean有false和true两个值,你可以获取到各个数字类型的最值. 复杂的数字和日期 如果需要更强大的数类,可以使用spire,sc

2、Add Two Numbers

1.Add Two Numbers--这是leedcode的第二题: You are given two linked lists representing two non-negative numbers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list. Input:

[LeetCode In C++] 2. Add Two Numbers

题目: You are given two linked lists representing two non-negative numbers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list. Input: (2 -> 4 -> 3) + (5 -> 6 -&

[LeetCode] Compare Version Numbers

Question: Compare two version numbers version1 and version2.If version1 > version2 return 1, if version1 < version2 return -1, otherwise return 0. You may assume that the version strings are non-empty and contain only digits and the . character.The 

LeetCode --- 2. Add Two Numbers

题目链接:Add Two Numbers You are given two linked lists representing two non-negative numbers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list. Input: (2 -> 4 -> 3