康拓展开与逆康拓展开

1.康托展开的解释

康托展开就是一种特殊的哈希函数

  把一个整数X展开成如下形式:

  X=a[n]*n!+a[n-1]*(n-1)!+...+a[2]*2!+a[1]*1!

  其中,a为整数,并且0<=a<i,i=1,2,..,n

  {1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。

  代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。

  他们间的对应关系可由康托展开来找到。

  如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :

  第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个

。所以321是第6个大的数。 2*2!+1*1!是康托展开。

  再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以

有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。

(1)找出第96个数

  首先用96-1得到95

  用95去除4! 得到3余23

  用23去除3! 得到3余5

  用5去除2!得到2余1

  用1去除1!得到1余0有3个数比它小的数是4

  所以第一位是4

  有3个数比它小的数是4但4已经在之前出现过了所以是5(因为4在之前出现过了所以实际比5小的数是3个)

  有2个数比它小的数是3

  有1个数比它小的数是2

  最后一个数只能是1

  所以这个数是45321

康拓展开与逆康拓展开C++代码:

/*
input
1 5
1 2 3 4 5
1 5
1 2 3 5 4
2 5
1
1 5
4 5 3 2 1
2 5
95
Output
Cantor=0
Cantor=1
数列为:1 2 3 5 4
Cantor=95
数列为:4 5 3 2 1
*/
#include<iostream>
#include<cstdio>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<cstring>
#include<algorithm>
#define rep(i,a,b) for(int i=(a);i<(b);i++)
#define rev(i,a,b) for(int i=(a);i>=(b);i--)
#define clr(a,x) memset(a,x,sizeof a)
#define inf 0x3f3f3f3f
typedef long long LL;
using namespace std;

const int mod=1e9 +7;
const int maxn=2005;
const int maxm=4005;

int fac[]={1,1,2,6,24,120,720,5040,40320,362880};
int cantor(int *s,int n)
{
    int num=0;
    for(int i=0;i<n-1;i++)
    {
        int tmp=0;
        for(int j=i+1;j<n;j++)
            if(s[j]<s[i])tmp++;
        num+=fac[n-i-1]*tmp;
    }
    return num;
}

void _cantor(int *s,int n,int x)
{
    bool tmp[n+1];
    clr(tmp,0);
    for(int i=n-1;i>=0;i--)
    {
        int k=x/fac[i];x%=fac[i];
        int j=1;
        for(int sum=0;sum<k||tmp[j];j++)
            if(!tmp[j])sum++;
        s[n-1-i]=j;
        tmp[j]=1;
    }
}

int main()
{
    int flag,n;
    while(~scanf("%d%d",&flag,&n))
    {
        if(flag==1)
        {
            int s[n];
            for(int i=0;i<n;i++)
                scanf("%d",&s[i]);
            printf("Cantor=%d\n",cantor(s,n));
        }
        else if(flag==2)
        {
            int x,ans[n];
            scanf("%d",&x);
            _cantor(ans,n,x);
            cout<<"数列为:";
            for(int i=0;i<n;i++)
                printf("%d%c",ans[i],i==n-1?'\n':' ');
        }
    }
    return 0;
}

参考:http://www.cnblogs.com/hxsyl/archive/2012/04/11/2443009.html

时间: 2024-10-09 18:36:09

康拓展开与逆康拓展开的相关文章

康拓展开和逆康拓展开

康拓展开和逆康拓展开 康拓展开模板题 复杂度O(\(n^2\))的会tle(看数据就知道了)(虽然某题解说可以,不知道是不是后期加强了数据 然而我还是写了O(\(n^2\))的 #include <cstdio> typedef long long LL; LL f[1000010]; const LL mod = 998244353; int a[1000010], b[1000010]; int main() { f[0] = 1; for(int i = 1; i < 100000

nyist 139 我排第几个&amp;&amp;143 第几是谁(康托展开和逆康托展开)

 我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 现在有"abcdefghijkl"12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的? 输入 第一行有一个整数n(0<n<=10000); 随后有n行,每行是一个排列: 输出 输出一个整数m,占一行,m表示排列是第几位: 样例输入 3 abcdefghijkl hgebkflacdji gfkedhjblcia 样例输出 1 3027

nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开

讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> using namespace std; int fac[20]; int fun(){ fac[0]=1; int i; for(i=1;i<=12;i++){ fac[i]=fac[i-1]*i; } } int main(){ int t,i,j,c,sum,num; char str[15];

康托展开和逆康托展开

问题:给定的全排列,计算出它是第几个排列? 对于全排列,不清楚的可以参考全排列 方法:康托展开 对于一个长度为 n 的排列 num[1..n], 其序列号 X 为 X = a[1]*(n-1)! + a[2]*(n-2)! +...+ a[i]*(n-i)! +...+ a[n-1]*1! + a[n]*0! 其中a[i]表示在num[i+1..n]中比num[i]小的数的数量 写做伪代码为: Cantor(num[]) X = 0 For i = 1 .. n tp = 0 For j = i

数据结构——康托展开与逆康托展开

含义 康托展开是一个全排列到一个自然数的双射,常用于构建哈希表时的空间压缩. 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的. 原理 X = s1(n-1)! + s2(n-2)! + s3(n-3)! + …… + sn-1 * 1! + sn * 0! 其中si表示在第i位右边比ai小的数的个数. 我们现在用sl表示第i位左边比ai小的数的个数,sr表示第i位右边比ai小的数的个数,显然可以得到如下等式: ai = sl + sr + 1 故公式中的si可以用上述等式

康托展开 / 逆康托展开

先搬一下(戳)维基百科的康托展开(戳): 康托展开是一个全排列到一个自然数的双射,常用于构建哈希表时的空间压缩. 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的. 由于是双射    所以可以求n的全排列里第k大的排列(逆康托展开) (伪)计算原理: 从某个元素找后面比这个元素小的数的个数,再乘以这个位置每一个数字能有的组合方法数(排列 / 阶乘),得出只考虑从这一位开始到末尾比当前小的排列数,然后加起来就是康托展开求的数(追求难懂的巅峰...........看不懂就看看维

LightOJ1060 nth Permutation(不重复全排列+逆康托展开)

一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!*...*Nn!), 然后就靠自己YY出解法,搞了好几天,最后向学长要了数据,然后迷迷糊糊调了,终于AC了. 后来才知道当时想的解法类似于逆康托展开,只是逆康托展开是对于没有重复元素全排列而言,不过有没有重复元素都一个样. 而现在做这题很顺,因为思路很清晰了,另外这做法和数论DP的统计部分有相似之处.

NYOJ143 第几是谁? 【逆康托展开】

第几是谁? 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 现在有"abcdefghijkl"12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的.但是现在我们给出它是第几小,需要你求出它所代表的序列. 输入 第一行有一个整数n(0<n<=10000); 随后有n行,每行是一个整数m,它代表着序列的第几小: 输出 输出一个序列,占一行,代表着第m小的序列. 样例输入 3 1 302715242 2607

康托和逆康托展开(转)

1.康托展开的解释 康托展开就是一种特殊的哈希函数 把一个整数X展开成如下形式: X=a[n]*n!+a[n-1]*(n-1)!+...+a[2]*2!+a[1]*1! 其中,a为整数,并且0<=a<i,i=1,2,..,n {1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个.123 132 213 231 312 321 . 代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来. 他们间的对应关系可由康托展开来找到.