递推之错排公式

错排问题 就是一种递推式,不过它比较著名且常用,所以要熟记!

方法一: 
n各有序的元素应有n!种不同的排列。如若一个排列式的所有的元素都不在原来的位置上,则称这个排列为错排。任给一个n,求出1,2,……,n的错排个数Dn共有多少个。
递归关系式为:D(n)=(n-1)(D(n-1)+D(n-2))
D(1)=0,D(2)=1
可以得到:
错排公式为 f(n) = n![1-1/1!+1/2!-1/3!+……+(-1)^n*1/n!] 
其中,n!=1*2*3*.....*n,
特别地,有0!=0,1!=1.

解释: 
n 个不同元素的一个错排可由下述两个步骤完成: 
第一步,“错排” 1 号元素(将 1 号元素排在第 2 至第 n 个位置之一),有 n - 1 种方法。 
第二步,“错排”其余 n - 1 个元素,按如下顺序进行。视第一步的结果,若1号元素落在第 k 个位置,第二步就先把 k 号元素“错排”好, k 号元素的不同排法将导致两类不同的情况发生:
1、 k 号元素排在第1个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 种方法;
2、 k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k 个位置(也就是说本来准备放到k位置为元素,可以放到1位置中),于是形成(包括 k 号元素在内的) n - 1 个元素的“错排”,有 f(n - 1) 种方法。据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。 
根据乘法原理, n 个不同元素的错排种数 
f(n) = (n-1)[f(n-2)+f(n-1)] (n>2) 。

证毕。

感谢明神的指教!

时间: 2024-10-09 04:02:50

递推之错排公式的相关文章

经典递推问题错排公式分析

问题: 十本不同的书放在书架上.现重新摆放,使每本书都不在原来放的位置.有几种摆法? 这个问题推广一下,就是错排问题,是组合数学中的问题之一.考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排. n个元素的错排数记为D(n). 研究一个排列错排个数的问题,叫做错排问题或称为更列问题. 错排问题最早被尼古拉·伯努利和欧拉研究,因此历史上也称为伯努利-欧拉的装错信封的问题.这个问题有许多具体的版本,如在写信时将n封信装到n个不同的信封里,有多

题目1451:不容易系列之一(递推)错排公式

题目1451:不容易系列之一 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:1423 解决:830 题目描述: 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样.话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的.比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以

杭电 1465 不容易系列之一(错排公式)

http://acm.hdu.edu.cn/showproblem.php?pid=1465 不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 14236    Accepted Submission(s): 5917 Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了

错排公式

1 递推的方法推导错排公式 当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推. 第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法: 第二步,放编号为k的元素,这时有两种情况⑴把它放到位置n,那么,对于剩下的n-1个元素,由于第k个元素放到了位置n,剩下n-2个元素就有M(n-2)种方法:⑵第k个元素不把它放到位置n,这时,对于这n-1个元素,有M(n-1)种方法

错排公式的学习

所谓错排,将一定数量的个体从它原来的位置换到一个非它原位置的方法总数. 错排可以利用递推来做,错排据了解也是可以直接利用组合数公式来做的,但是当 错排个体的数目巨大时,数据会非常的大. 因此即使利用递推,数组来存的方法做,仍要定义为long long 的数据类型,否 则数据会溢出. // 考察错排 #include <stdio.h> #include <stdio.h> long long f[30]; int main() { f[2]=1; f[3]=2; int i, n;

错排公式 错排(加组合)

递推的方法推导错排公式 当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推. 第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法; 第二步,放编号为k的元素,这时有两种情况.1,把它放到位置n,那么,对于剩下的n-2个元素,就有M(n-2)种方法;2,不把它放到位置n,这时,对于这n-1个元素,有M(n-1)种方法; 综上得到 M(n)=(n-1)[M(n-2)+M

数学知识--错排公式

错排公式 核心递推公式: D(n) = (n-1) [D(n-2) + D(n-1)] 特殊地,D(1) = 0, D(2) = 1. 问题: 十本不同的书放在书架上.现重新摆放,使每本书都不在原来放的位置.有几种摆法? 这个问题推广一下,就是错排问题,是组合数学中的问题之一.考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排. n个元素的错排数记为D(n). 研究一个排列错排个数的问题,叫做错排问题或称为更列问题. 错排问题最早被尼古拉

K - Wand(组合数+错排公式)

N wizards are attending a meeting. Everyone has his own magic wand. N magic wands was put in a line, numbered from 1 to n(Wand_i owned by wizard_i). After the meeting, n wizards will take a wand one by one in the order of 1 to n. A boring wizard deci

hdu 1465(不容易系列之一)(水题,错排公式)(a[n]=(n-1)*(a[n-1]+a[n-2]))

不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 14924    Accepted Submission(s): 6207 Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好"一件"事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总