【基础练习】【区间DP】codevs2102 石子归并2(环形)题解

题目描写叙述 Description

在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次仅仅能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入描写叙述 Input Description

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出描写叙述 Output Description

输出共2行,第1行为最小得分,第2行为最大得分.

例子输入 Sample Input

4

4 4 5 9

例子输出 Sample Output

43

54

将环形变成线性,数组开大一倍就可以。

ans=min{f[1,n],f[2,n+1],...,f[n,2n-1]}

复杂度O(n^3)

前缀和等与线性一致。仅仅是要注意循环什么的都要开到2*n-1

代码在此

——今古恨,几千般,仅仅应离合是悲欢

时间: 2024-10-12 16:01:45

【基础练习】【区间DP】codevs2102 石子归并2(环形)题解的相关文章

区间DP:石子归并

题目描述  Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1].问安排怎样的合并顺序,能够使得总合并代价达到最小. 输入描述 Input Description 第一行一个整数n(n<=100) 第二行n个整数w1,w2...wn  (wi <= 100) 输出描述 Output Description 一个整数表示最小合并代价 样例输入 Sample Input 4 4 1 1 4

石子合并问题(一) (基础的区间dp)

石子合并(一) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述     有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值. 输入 有多组测试数据,输入到文件结束. 每组测试数据第一行有一个整数n,表示有n堆石子. 接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开 输出 输出总代价的最小值,

[NYIST737]石子合并(一)(区间dp)

题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=737 很经典的区间dp,发现没有写过题解.最近被hihocoder上几道比赛题难住了,特此再回头重新理解一遍区间dp. 这道题的题意很明确,有一列石子堆,每堆石子都有数量,还有一个操作:相邻两堆石子合并成一堆石子,这个操作的代价是这两堆石子的数目和.要找一个合并次序,使得代价最小,最终输出最小代价. 这个题可以用动态规划,简单分析可以得知,这一列石子堆都可以划分为小区间,每个小区间

转载+删改:算法讲解之Dynamic Programing —— 区间DP [变形:环形DP]

发现一篇好文,可惜发现有一些地方有排版问题.于是改了一下,并加了一些自己的内容. 原文链接 对区间DP和其变式环形DP的总结. 首先先来例题. 石子归并 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1].问安排怎样的合并顺序,能够使得总合并代价达到最小. 输入描述 Input Description 第一行一个整数n(n<=100) 第二行n个整数w1,w2...wn (wi

HDU4283:You Are the One(区间DP)

Problem Description The TV shows such as You Are the One has been very popular. In order to meet the need of boys who are still single, TJUT hold the show itself. The show is hold in the Small hall, so it attract a lot of boys and girls. Now there ar

区间DP基础——石子归并

http://acm.nyist.net/JudgeOnline/problem.php?pid=737 石子归并:先枚举要合并的区间长,然后枚举相应的区间左端点,最后枚举区间中间的划分点,这样,就可以由小到大递推解决区间问题了. 转移方程:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]) 1 #include<iostream> 2 #include<cstdio> 3 #define INF

石子归并-2:区间DP{环形}

题目描述 Description 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分. 输入描述 Input Description 数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数. 输出描述 Output Description 输出共2行,第1行为最小得分,第2行为最大得分. 样例输入

台州 OJ 2793 石子归并 区间DP

描述 有n堆石子排成一条直线,每堆石子有一定的重量.现在要合并这些石子成为一堆石子,但是每次只能合并相邻的两堆.每次合并需要消耗一定的体力,该体力为所合并的两堆石子的重量之和.问最少需要多少体力才能将n堆石子合并成一堆石子? 输入 输入只包含若干组数据.每组数据第一行包含一个正整数n(2<=n<=100),表示有n堆石子.接下来一行包含n个正整数a1,a2,a3,...,an(0<ai<=100,1<=i<=n). 输出 对应输入的数据,每行输出消耗的体力. dp[i]

【日常学习】【区间DP】codevs1048 石子归并题解

题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1].问安排怎样的合并顺序,能够使得总合并代价达到最小. 输入描述 Input Description 第一行一个整数n(n<=100) 第二行n个整数w1,w2...wn  (wi <= 100) 输出描述 Output Description 一个整数表示最小合并代价 样例输入 Sample Input 4 4 1 1 4 样