全网最!详!细!tarjan算法讲解。——转载自没有后路的路

全网最!详!细!tarjan算法讲解。

全网最详细tarjan算法讲解,我不敢说别的。反正其他tarjan算法讲解,我看了半天才看懂。我写的这个,读完一遍,发现原来tarjan这么简单!

tarjan算法,一个关于 图的联通性的神奇算法。基于DFS(迪法师)算法,深度优先搜索一张有向图。!注意!是有向图。根据树,堆栈,打标记等种种神(che)奇(dan)方法来完成剖析一个图的工作。而图的联通性,就是任督二脉通不通。。的问题。
了解tarjan算法之前你需要知道:
强连通,强连通图,强连通分量,解答树(解答树只是一种形式。了解即可)
不知道怎么办!!!

神奇海螺~:嘟噜噜~!
强连通(strongly connected): 在一个有向图G里,设两个点 a b 发现,由a有一条路可以走到b,由b又有一条路可以走到a,我们就叫这两个顶点(a,b)强连通。

强连通图: 如果 在一个有向图G中,每两个点都强连通,我们就叫这个图,强连通图。

强连通分量strongly connected components):在一个有向图G中,有一个子图,这个子图每2个点都满足强连通,我们就叫这个子图叫做 强连通分量 [分量::把一个向量分解成几个方向的向量的和,那些方向上的向量就叫做该向量(未分解前的向量)的分量]
举个简单的栗子:

比如说这个图,在这个图中呢,点1与点2互相都有路径到达对方,所以它们强连通.

而在这个有向图中,点1 2 3组成的这个子图,是整个有向图中的强连通分量。

解答树:就是一个可以来表达出递归枚举的方式的树(图),其实也可以说是递归图。。反正都是一个作用,一个展示从“什么都没有做”开始到“所有结求出来”逐步完成的过程。“过程!”

神奇海螺结束!!!

tarjan算法,之所以用DFS就是因为它将每一个强连通分量作为搜索树上的一个子树。而这个图,就是一个完整的搜索树。
为了使这颗搜索树在遇到强连通分量的节点的时候能顺利进行。每个点都有两个参数。
1,DFN[]作为这个点搜索的次序编号(时间戳),简单来说就是 第几个被搜索到的。%每个点的时间戳都不一样%。
2,LOW[]作为每个点在这颗树中的,最小的子树的根,每次保证最小,like它的父亲结点的时间戳这种感觉。如果它自己的LOW[]最小,那这个点就应该从新分配,变成这个强连通分量子树的根节点。
ps:每次找到一个新点,这个点LOW[]=DFN[]。

而为了存储整个强连通分量,这里挑选的容器是,堆栈。每次一个新节点出现,就进站,如果这个点有 出度 就继续往下找。直到找到底,每次返回上来都看一看子节点与这个节点的LOW值,谁小就取谁,保证最小的子树根。如果找到DFN[]==LOW[]就说明这个节点是这个强连通分量的根节点(毕竟这个LOW[]值是这个强连通分量里最小的。)最后找到强连通分量的节点后,就将这个栈里,比此节点后进来的节点全部出栈,它们就组成一个全新的强连通分量。

先来一段伪代码压压惊:
tarjan(u){

  DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值

  Stack.push(u)   // 将节点u压入栈中

  for each (u, v) in E // 枚举每一条边

    if (v is not visted) // 如果节点v未被访问过

        tarjan(v) // 继续向下找

        Low[u] = min(Low[u], Low[v])

    else if (v in S) // 如果节点u还在栈内

        Low[u] = min(Low[u], DFN[v])

  if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根

  repeat
v = S.pop  // 将v退栈,为该强连通分量中一个顶点

  print v

  until (u== v)

}

首先来一张有向图。网上到处都是这个图。我们就一点一点来模拟整个算法。

从1进入 DFN[1]=LOW[1]= ++index ----1
入栈 1
由1进入2 DFN[2]=LOW[2]= ++index ----2
入栈 1 2
之后由2进入3 DFN[3]=LOW[3]= ++index ----3
入栈 1 2 3
之后由3进入 6 DFN[6]=LOW[6]=++index ----4
入栈 1 2 3 6

之后发现 嗯? 6无出度,之后判断 DFN[6]==LOW[6]
说明6是个强连通分量的根节点:6及6以后的点 出栈。
栈: 1 2 3
之后退回 节点3 Low[3] = min(Low[3], Low[6]) LOW[3]还是 3
节点3 也没有再能延伸的边了,判断 DFN[3]==LOW[3]
说明3是个强连通分量的根节点:3及3以后的点 出栈。
栈: 1 2
之后退回 节点2 嗯?!往下到节点5
DFN[5]=LOW[5]= ++index -----5
入栈 1 2 5

ps:你会发现在有向图旁边的那个丑的(划掉)搜索树 用红线剪掉的子树,那个就是强连通分量子树。每次找到一个。直接。一剪子下去。半个子树就没有了。。

结点5 往下找,发现节点6 DFN[6]有值,被访问过。就不管它。
继续 5往下找,找到了节点1 他爸爸的爸爸。。DFN[1]被访问过并且还在栈中,说明1还在这个强连通分量中,值得发现。 Low[5] = min(Low[5], DFN[1])
确定关系,在这棵强连通分量树中,5节点要比1节点出现的晚。所以5是1的子节点。so
LOW[5]= 1

由5继续回到2 Low[2] = min(Low[2], Low[5])
LOW[2]=1;
由2继续回到1 判断 Low[1] = min(Low[1], Low[2])
LOW[1]还是 1
1还有边没有走过。发现节点4,访问节点4
DFN[4]=LOW[4]=++index ----6
入栈 1 2 5 4
由节点4,走到5,发现5被访问过了,5还在栈里,
Low[4] = min(Low[4], DFN[5]) LOW[4]=5
说明4是5的一个子节点。

由4回到1.

回到1,判断 Low[1] = min(Low[1], Low[4])
LOW[1]还是 1 。

判断 LOW[1] == DFN[1]
诶?!相等了    说明以1为根节点的强连通分量已经找完了。
将栈中1以及1之后进栈的所有点,都出栈。
栈 :(鬼都没有了)

这个时候就完了吗?!

你以为就完了吗?!

然而并没有完,万一你只走了一遍tarjan整个图没有找完怎么办呢?!

所以。tarjan的调用最好在循环里解决。

like    如果这个点没有被访问过,那么就从这个点开始tarjan一遍。

因为这样好让每个点都被访问到。

来一道裸代码。
输入:
一个图有向图。
输出:
它每个强连通分量。

这个图就是刚才讲的那个图。一模一样。

input:

6 8

1 3

1 2

2 4

3 4

3 5

4 6

4 1

5 6

output:

6

5

3 4 2 1

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<string.h>
 4 using namespace std;
 5 struct node {
 6     int v,next;
 7 }edge[1001];
 8 int DFN[1001],LOW[1001];
 9 int stack[1001],heads[1001],visit[1001],cnt,tot,index;
10 void add(int x,int y)
11 {
12     edge[++cnt].next=heads[x];
13     edge[cnt].v = y;
14     heads[x]=cnt;
15     return ;
16 }
17 void tarjan(int x)//代表第几个点在处理。递归的是点。
18 {
19     DFN[x]=LOW[x]=++tot;// 新进点的初始化。
20     stack[++index]=x;//进站
21     visit[x]=1;//表示在栈里
22     for(int i=heads[x];i!=-1;i=edge[i].next)
23     {
24         if(!DFN[edge[i].v]) {//如果没访问过
25             tarjan(edge[i].v);//往下进行延伸,开始递归
26             LOW[x]=min(LOW[x],LOW[edge[i].v]);//递归出来,比较谁是谁的儿子/父亲,就是树的对应关系,涉及到强连通分量子树最小根的事情。
27         }
28         else if(visit[edge[i].v ]){  //如果访问过,并且还在栈里。
29             LOW[x]=min(LOW[x],DFN[edge[i].v]);//比较谁是谁的儿子/父亲。就是链接对应关系
30         }
31     }
32     if(LOW[x]==DFN[x]) //发现是整个强连通分量子树里的最小根。
33     {
34         do{
35             printf("%d ",stack[index]);
36             visit[stack[index]]=0;
37             index--;
38         }while(x!=stack[index+1]);//出栈,并且输出。
39         printf("\n");
40     }
41     return ;
42 }
43 int main()
44 {
45     memset(heads,-1,sizeof(heads));
46     int n,m;
47     scanf("%d%d",&n,&m);
48     int x,y;
49     for(int i=1;i<=m;i++)
50     {
51         scanf("%d%d",&x,&y);
52         add(x,y);
53     }
54     for(int i=1;i<=n;i++)
55          if(!DFN[i])  tarjan(1);//当这个点没有访问过,就从此点开始。防止图没走完
56     return 0;
57 }
时间: 2024-10-06 10:12:16

全网最!详!细!tarjan算法讲解。——转载自没有后路的路的相关文章

【转载】全网最!详!细!tarjan算法讲解。

转自http://www.cnblogs.com/uncle-lu/p/5876729.html 全网最详细tarjan算法讲解,我不敢说别的.反正其他tarjan算法讲解,我看了半天才看懂.我写的这个,读完一遍,发现原来tarjan这么简单! tarjan算法,一个关于 图的联通性的神奇算法.基于DFS(迪法师)算法,深度优先搜索一张有向图.!注意!是有向图.根据树,堆栈,打标记等种种神(che)奇(dan)方法来完成剖析一个图的工作.而图的联通性,就是任督二脉通不通..的问题.了解tarja

全网最!详!细!tarjan算法讲解。

全网最详细tarjan算法讲解,我不敢说别的.反正其他tarjan算法讲解,我看了半天才看懂.我写的这个,读完一遍,发现原来tarjan这么简单! tarjan算法,一个关于 图的联通性的神奇算法.基于DFS(迪法师)算法,深度优先搜索一张有向图.!注意!是有向图.根据树,堆栈,打标记等种种神(che)奇(dan)方法来完成剖析一个图的工作.而图的联通性,就是任督二脉通不通..的问题.了解tarjan算法之前你需要知道:强连通,强连通图,强连通分量,解答树(解答树只是一种形式.了解即可)不知道怎

tarjan 算法讲解(转)

转自:https://www.byvoid.com/blog/scc-tarjan/ 網誌 列表 標籤 項目 關於 聯繫 四月142009 作者:byvoid 閱讀: 158882 計算機科學 圖論 強連通分量 Tarjan 堆棧 有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(s

有向图强连通分支的Tarjan算法讲解 + HDU 1269 连通图 Tarjan 结题报告

题目很简单就拿着这道题简单说说 有向图强连通分支的Tarjan算法 有向图强连通分支的Tarjan算法伪代码如下:void Tarjan(u) {dfn[u]=low[u]=++index//进行DFS,每发现一个新的点就对这个点打上时间戳,所以先找到的点时间戳越早,dfn[U]表示最早发现u的时间,low[u]表示u能到达的最早的时间戳.stack.push(u)//将U压入栈中for each (u, v) in E {if (v is not visted)//如果V点没有经历过DFS,则

Tarjan算法分解强连通分量(附详细参考文章)

Tarjan算法分解强连通分量 算法思路: 算法通过dfs遍历整个连通分量,并在遍历过程中给每个点打上两个记号:一个是时间戳,即首次访问到节点i的时刻,另一个是节点u的某一个祖先被访问的最早时刻. 时间戳用DFN数组存储,最早祖先用low数组来存,每次dfs遍历到一个节点u,即让这两个记号等于当前时刻,在后面回溯或者判断的过程中在来更新low,DNF是一定的,因为第一次访问时刻一定.然后遍历u的子节点,也就是跟u相连的点v,依次看子节点的时间戳有没有打上,也就是看他有没有被访问过.\(1\).没

(转载)LCA问题的Tarjan算法

转载自:Click Here LCA问题(Lowest Common Ancestors,最近公共祖先问题),是指给定一棵有根树T,给出若干个查询LCA(u, v)(通常查询数量较大),每次求树T中两个顶点u和v的最近公共祖先,即找一个节点,同时是u和v的祖先,并且深度尽可能大(尽可能远离树根).LCA问题有很多解法:线段树.Tarjan算法.跳表.RMQ与LCA互相转化等.本文主要讲解Tarjan算法的原理及详细实现. 一 LCA问题 LCA问题的一般形式:给定一棵有根树,给出若干个查询,每个

Tarjan算法详解

Tarjan算法详解 [概念] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. [功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连

【转载】有向图强连通分量的Tarjan算法

from byvoid [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为

Tarjan算法详解理解集合

[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连通分量就是极大强连通分量. [算法思想] 用dfs遍历G中的每个顶点,通dfn[i]表示dfs时达到顶点i的时间,low[i]表示i所能直接或间接达到时间最小的顶点.(实际操作中low[i]不一定最小,但不会影响程序的最终结果) 程序开始时,time初始化为0,在dfs遍历到v时,low[v]=df