n阶幻方问题

转载自:http://blog.csdn.net/fengchaokobe/article/details/7437767

目录
        第一节 n阶幻方问题
       第二节 由n阶幻方引发的思考

正文

第一节 n阶幻方问题

所谓n阶幻方问题,俗称“横竖斜相加和相等”(我们当时就是这么叫的)。用术语说就是:在一个N行N列的方格表中,有1,2,3......N*N-1,N*N这N*N个整数,且其对角线、横行、纵行的数字和都相等。
       好了,在具体详解该问题之前,我们先看个例子,熟悉一下,如下图所示:

由上图可知,幻方有奇数阶幻方和偶数阶幻方两种,而偶数阶幻方又分为4m阶幻方和4m+2阶幻方两类。

1.奇数阶幻方
       我记得基数阶幻方有个口诀,有了这个口诀,走遍奇数幻方都不怕。其实这个口诀也是实现奇数幻方的步骤。

奇幻七绝
  先填上行正中央,
  依次斜填切莫忘。
  上格没有顶格填,
  顶格没有底格放。

我作图解释一下这首七绝。

看着图是不是有点乱,具体每一步我就不做图说明了,你自己可以看着口诀写一下,挺有意思。要是感觉3*3方格写起来没有意思,你可以试一下5*5,7*7或者更大的。写完了之后看看横竖斜相加和是否相等。
附注:如果上述口诀有什么问题,请留言说明,谢谢!
注:按我的理解就是在第一行中间填数字1,然后依次向左上角填写数字2,3,4。。。。如果当前数字的左上角已经被占用,那么就在当前数字的下方填写,再依次向左上角按顺序填写
ok,奇数幻方就讲完了,就这么简单。权当找乐子!

2.偶数阶幻方
       说实话,偶数阶幻方我一直以为只有一种,就是2*n阶幻方问题。查了一下才知道偶数阶幻方也分为两小类。

①.4*n阶幻方
       4*n阶幻方的生成其实很简单,即对方格中对角线上的数据,先以一条对角线(称对角线一)为对称轴,交换另一对角线(称对角线二)的数据;然后以对角线二为对称轴,交换对角线一的数据。说的直白一点,假设矩阵名为MagicSquare,就是交换MagicSquare[i,j]和MagicSquare[n-1-i,n-1-j]。老办法,作图来说明。图如下:

好了,4*n阶幻方也晚了,怎么样,简单吧!自己动手试试吧。

②.4*n+2阶幻方
        4*n+2,乍一看就较4*n麻烦了,事实也是如此,不过它的思想也简单。就是将4*n+2看做2*(2*n+1),这样一来就转化成了四个2*n+1求幻方。
附注:下面的我以6阶幻方为例,那么,4*n+2=6,所以n=1。

我通过描述每个步骤加上图形的方式来表述4*n+2阶幻方实现的过程。

第一步:把整个表格分成4个(2*n+1)*(2*n+1)的小表格,分别叫A,B,C,D。见下图

第二步:这样A,B,C,D个小表格就成奇数幻方问题了。
       ①.将1,2,...,(2*n+1)*(2*n+1)这些数划分给A,并对A实现奇数幻方;
       ②.将(2*n+1)*(2*n+1)+1,...,2*(2*n+1)*(2*n+1)这些数划分给B,并对B实现奇数幻方;
       ③.将2*(2*n+1)*(2*n+1)+1,...3*(2*n+1)*(2*n+1)这些数划分C,并对C实现奇数幻方;
       ④.将3*(2*n+1)*(2*n+1)+1,...4*(2*n+1)*(2*n+1)这些数划分D,并对D实现奇数幻方。
见下图

第三步:从A表中的中心(即第n行的MagicSquare[n][n])开始,按照从左向右的方向,标出n个数,A表中的其他行则标出最左边的n格中的数(在图中用红色背景标出)。并且将这些标出的数和C表中的对应位置互换。见下图

第四步:在B表中的中心(如上解释)开始,自右向左,标出n-1列,将B中标出的数据与D表中对应位置的数据交换。但是6阶幻方中,n-1此时等于0,所以B与D不用做交换。

至此,这个幻方就成了,如下图。

附注:以上几个问题的程序就不送上了,有兴趣的朋友可以自己写一下。

第二节 由n阶幻方想到的

幻方问题就说完了,比较一下我还是感觉奇数阶幻方有意思,而且比偶数阶幻方问题容易些,没有那么麻烦。按说写到此本应该结束了,可是我突发奇想,n阶幻方这个问题利用数学知识很容就能解决,那么我想问一下大家:在平时写程序思考算法的时候,你是否会利用数学知识来解决问题呢?

假如这个问题让你在限定的时间内编程来实现.如果你对n阶幻方很了解,知道奇偶两种情况的做法,好,那没有问题,恭喜你!但是,恰巧你对n阶幻方不是很了解,也不知道奇偶阶幻方的做法,那这个问题你会怎么解决?用枚举还是用其他什么算法。这是你不得不考虑的。

说到这,我又想到了一个例子,如:求1,2,...,99,100的和,请编程实现。你会怎么做?这个确实很简单,我相信多数朋友都会用一个for或是一个while来解决问题。那还有没有更简单的办法呢?当然有,利用数学知识来解决,1,2,...,99,100就是一个等差数列,等差数列求和的公式S=(首项+末项)*项数/2,直接得出结果。哪个效率更高,不言而喻。所以说,数学知识在我们编程中很有用,只是我们经常考虑不到而已!

第三节 结束语

如果你有更有趣或者值得深思的题目请分享!

时间: 2024-10-07 23:46:32

n阶幻方问题的相关文章

Java 实现任意N阶幻方的构造

一.关于单偶数阶幻方和双偶数阶幻方 (一)单偶数阶幻方(即当n=4k+2时) 任何4k+2 阶幻方都可由2k+1阶幻方与2×2方块复合而成,6是此类型的最小阶. 以6阶为例,可由3阶幻方与由0,1,2,3组成的2×2的小方块拼成一个6×6的大方块复合而成. 其中,3阶幻方(洛书)如下图1所示, (图1) 800x600 Normal 0 7.8 磅 0 2 false false false EN-US ZH-CN X-NONE MicrosoftInternetExplorer4 /* Sty

Java 实现奇数阶幻方的构造

一.设计的流程图如下所示 二.Java 语言的代码实现 package MagicSquare; //奇数幻方的实现 public class Magic_Odd { //n 为幻方的阶数 public static int[][] magicOdd(int n) { //构造一个(n+2)*(n+2)阶的方阵 int[][] square = new int[n + 1][n + 1]; int i = 0; int j = (n + 1) / 2; //从第一行的中间那个数字(是1)开始填幻

任意阶幻方(魔方矩阵)C语言实现

魔方又称幻方.纵横图.九宫图,最早记录于我国古代的洛书.据说夏禹治水时,河南洛阳附近的大河里浮出了一只乌龟,背上有一个很奇怪的图形,古人认为是一种祥瑞,预示着洪水将被夏禹王彻底制服.后人称之为"洛书"或"河图",又叫河洛图. 南宋数学家杨辉,在他著的<续古摘奇算法>里介绍了这种方法:只要将九个自然数按照从小到大的递增次序斜排,然后把上.下两数对调,左.右两数也对调:最后再把中部四数各向外面挺出,幻方就出现了. (摘自<趣味数学辞典>) 在西方

任意阶幻方的c++实现----奇阶幻方、双偶幻方、单偶幻方。

幻方分为3类.奇阶幻方(奇数).双偶幻方(能够被4整除,如8,12,16--).单偶幻方(4m+2形式,如6,10--),构造算法各不相同. 下面的程序中,奇阶幻方的构造算法为Merzirac法.双偶幻方的构造算法为Spring法.单偶幻方的构造算法为Strachey法. 单偶幻方: 在第一行居中的方格内放1,依次向右上方填入2.3.4-,如果右上方已有数字,则向下移一格继续填写. 参考:http://blog.csdn.net/zheng0518/article/details/9006281

N(奇数)阶幻方-java实现代码

看完最强大脑,有一期是说N阶幻立方的,作为一个程序员,我的第一反应时我可以用程序实现,在此公布N(奇数)阶幻方的java实现代码: package com.lzugis.test; public class Practice { public static int[][] magicOdd(int n) { int[][] square = new int[n + 1][n + 1]; int i = 0; int j = (n + 1) / 2; for (int key = 1; key <

codeforces 710C Magic Odd Square(构造或者n阶幻方)

Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, column and both main diagonals are odd. Input The only line contains odd integer n (1 ≤ n ≤ 49). Output Print n lines with n integers. All the integers should be differ

Tyvj1109|N阶幻方

描述在一个由若干个排列整齐的数组成的正方形中,图中任意一横行.一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为幻方.目前已经确定,N阶幻方(n>=3)都可以构造出幻方.我们的问题是,当构造的幻方,任意一横行的数累加的和是多少.输入格式一个数n表示n阶幻方 n<=10000输出格式一个数,任意一横行的数累加的和测试样例1输入3 输出15 备注组合数学例题 分析:套公式. #include<iostream> using namespace std; int main() {

求N奇数阶幻方

1. 如果矩阵满足条件,那么对任意,也满足条件.证明显然. 设为奇数,我们现在构造一个n阶幻方包含0到所有数这里x,y满足同余式待确定. 由于该方程组的系数矩阵的行列式为1,所以对任意i,j有唯一解.我们接下来确定a,b: 首先验证每行每列的和均相等,即 由于对任意i,,当x取遍模n的剩余类时,也会取遍所有的剩余类 故每行的和为:同理验证每列. 对于对角线:令b = n - 1, a = (n-1)/2,可以验证y = (n - 1)/2, x = i所以其和为:n*(0 + ... n - 1

【C++小白成长撸】--N阶幻方(魔阵)矩阵

解决方法:1.第一个元素放在第一行中间一列 2.下一个元素存放在当前元素的上一行.下一列. 3.如果上一行.下一列已经有内容,则下一个元素的存放位置为当前列的下一行. 在找上一行.下一行或者下一列的时候,必须把这个矩阵看成是回绕的. 代码中,为了判断,当前位置是否有元素,我引入与魔方矩阵规模相同的另一个矩阵,如果魔方矩阵一个位置不为空,相应另一个矩阵那个位置为1,否则为0. 1 /*程序的版权和版本声明部分: 2 **Copyright(c) 2016,电子科技大学本科生 3 **All rig