[Codefoeces398B]Painting The Wall(概率DP)

题目大意:一个$n\times n$的棋盘,其中有$m$个格子已经被染色,执行一次染色操作(无论选择的格子是否已被染色)消耗一个单位时间,染色时选中每个格子的概率均等,求使每一行、每一列都存在被染色的格子的期望用时。



传送门

显然,被染色的砖的位置对解题是没有影响的,我们可以将已染色砖所在的行和列移动到右下角,问题就转化到了在更小棋盘中的新问题。

在任一时刻,棋盘内的状态如下:

其中绿色区域为当前问题的棋盘,选中对行和列都有贡献;

选中黄色对行或列有贡献;

选中红色没有贡献;

设$f[i][j]$表示剩余$i$行$j$列未染色,则$$f[i][j]=\frac {i\times j\times f[i-1][j-1]+i\times (n-j)\times f[i-1][j]+(n-i)\times j\times f[i][j-1]+(n-i)\times (n-j)\times f[i][j]} {n^2}$$

两边都有$f[i][j]$,化简得:$$f[i][j]=\frac {n^2+i\times j\times f[i-1][j-1]+i\times (n-j)\times f[i-1][j]+(n-i)\times j\times f[i][j-1]} {n^2-(n-i)\times (n-j)}$$



代码:

 1 #include<cstring>
 2 #include<cstdio>
 3 #include<algorithm>
 4 #include<cmath>
 5 #define foru(i,x,y) for(int i=x;i<=y;i++)
 6 using namespace std;
 7 typedef double db;
 8 const int N=2010;
 9 db f[N][N];
10 int br[N],bc[N],n,m,x,y,r,c;
11 int main(){
12     scanf("%d%d",&n,&m);
13     r=c=n;
14     foru(i,1,m){
15         scanf("%d%d",&x,&y);
16         if(!br[x])br[x]=1,r--;
17         if(!bc[y])bc[y]=1,c--;
18     }
19     f[0][0]=0;
20     foru(i,1,n){
21         f[i][0]=f[i-1][0]+(db)n/i;
22         f[0][i]=f[0][i-1]+(db)n/i;
23     }
24     foru(i,1,r)
25         foru(j,1,c){
26             f[i][j]=(db)n*n+(i*j*f[i-1][j-1]+i*(n-j)*f[i-1][j]+(n-i)*j*f[i][j-1]);
27             f[i][j]/=(n*n-(n-i)*(n-j));
28         }
29     printf("%.10lf\n",f[r][c]);
30 }
时间: 2024-11-04 15:32:03

[Codefoeces398B]Painting The Wall(概率DP)的相关文章

Codeforces Round #233 (Div. 2)D. Painting The Wall 概率DP

                                                                               D. Painting The Wall User ainta decided to paint a wall. The wall consists of n2 tiles, that are arranged in an n × n table. Some tiles are painted, and the others are not

CF398B Painting The Wall 概率期望

题意:有一个 $n * n$ 的网格,其中 $m$ 个格子上涂了色.每次随机选择一个格子涂色,允许重复涂,求让网格每一行每一列都至少有一个格子涂了色的操作次数期望.题解:,,这种一般都要倒推才行.设$f[i][j]$表示还有$i$行,$j$列未满足的情况下的期望次数.因为每次选择都是完全随机,不受其他东西的影响.所以对于题中给出的$m$,实际上就是告诉了我们要求什么东西,假设在已经有那$m$个涂色方块的情况下,我们还有$t1$行,$t2$列未满足,那么我们要求的就是$f[t1][t2]$.那么我

uva 12723 概率dp

Dudu is a very starving possum. He currently stands in the first shelf of a fridge. This fridge iscomposed of N shelves, and each shelf has a number Qi (1 ≤ i ≤ N) of food. The top shelf, whereDudu is, is identified by the number 1, and the lowest is

Codeforces 28C [概率DP]

/* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队伍的期望. 思路: 概率dp dp[i][j][k]代表前i个浴室有j个人最长队伍是k的概率. 枚举第i个浴室的人数.然后转移的时候其实是一个二项分布. */ #include<bits/stdc++.h> using namespace std; int jilu[55]; double dp[

hdu 3076 ssworld VS DDD (概率dp)

///题意: /// A,B掷骰子,对于每一次点数大者胜,平为和,A先胜了m次A赢,B先胜了n次B赢. ///p1表示a赢,p2表示b赢,p=1-p1-p2表示平局 ///a赢得概率 比一次p1 两次p0*p1 三次 p0^2*p1,即A赢的概率为p1+p*p1+p^2*p1+...p^n*p1,n->无穷 ///即a_win=p1/(1-p);b_win=p2/(1-p); ///dp[i][j]表示a赢了j次,b赢了i次的概率 ///dp[i][j]=dp[i-1][j]*b_win+dp[

hdu 3853 概率DP 简单

http://acm.hdu.edu.cn/showproblem.php?pid=3853 题意:有R*C个格子,一个家伙要从(0,0)走到(R-1,C-1) 每次只有三次方向,分别是不动,向下,向右,告诉你这三个方向的概率,以及每走一步需要耗费两个能量,问你走到终点所需要耗费能量的数学期望: 回头再推次,思想跟以前的做过的类似 注意点:分母为0的处理 #include <cstdio> #include <cstring> #include <algorithm>

hdu4089(公式推导)概率dp

题意:有n人都是仙剑5的fans,现在要在官网上激活游戏,n个人排成一个队列(其中主角Tomato最初排名为m), 对于队列中的第一个人,在激活的时候有以下五种情况: 1.激活失败:留在队列中继续等待下一次激活(概率p1) 2.失去连接:激活失败,并且出队列然后排到队列的尾部(概率p2) 3.激活成功:出队列(概率p3) 4.服务器瘫:服务器停止服务了,所有人都无法激活了(概率p4) 求服务器瘫痪并且此时Tomato的排名<=k的概率. 解法:ans[i][j]表示i个人出于第j个位置要到目的状

poj3071(概率DP)

题意:淘汰赛制,2^n(n<=7)个队员.给出相互PK的输赢概率矩阵.问谁最有可能赢到最后. 解法:ans[i][j]表示第i个队员第j轮胜出的概率.赢到最后需要进行n场比赛.算出每个人赢到最后的ans[i][n].写出序号的二进制发现一个规律,两个队员i.j如果碰到,那么一定是在第get(i,j)场比赛碰到的.get(i,j)计算的是i和j二进制不同的最高位,这个规律也比较明显. 代码: /****************************************************

【Foreign】开锁 [概率DP]

开锁 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output Sample Input 4 5 1 2 5 4 3 1 5 2 2 5 4 3 1 5 3 2 5 4 3 1 5 4 2 5 4 3 1 Sample Output 0.000000000 0.600000000 0.900000000 1.000000000 HINT Main idea 一个宝箱内有一个可以开启别的宝箱的钥匙,可以选择k个宝箱,询问能开