线性变换的本质

线性变换就是矩阵的变换,而任何矩阵的变换可以理解为 一个正交变换+伸缩变换+另一个正交变换。(正交变换可以暂时理解为 不改变大小以及正交性的旋转/反射 等变换)A*P = y*P ,y就是特征值,P是特征向量,矩阵A做的事情无非是把P沿其P的方向拉长/缩短了一点(而不是毫无规律的多维变换)。y描述沿着这个方向上拉伸的比例

对于满秩的n*n方阵,做特征值变换,非满秩的矩阵,做奇异值变换,差别在于前者是个对角阵,后者形成对角阵和零矩阵合成的矩阵。

下面是更直观的例子(转自知乎https://www.zhihu.com/question/21082351):

  1. 平面内引入直角坐标系之后,二维空间内所有的向量都可以用两个基向量i=(1,0)和j=(0,1)的线性组合来表示,例如a=(4,6),可以表示为a=4i+6j
  2. 但是也可以由i=(2,0)和j=(0,2)两个向量来表示,例如a=2i+3j
  3. 还可以由i=(1,1)和j=(1,-1)来表示,例如a=5i-1j
  4. 或者由i=(1,0)和j=(1,-1)表示,例如a=10i-6j
  5. 在1的基础上,我们还可以将a表示为i=(1,0),j=(0,1),k=(1,1)三个向量的线性组合,也就是a=4i+6j+0k或者a=0i+2j+4k或者a=2i+4j+2k等等等等我举不完了。这其中k=i+j

通过上面的举例我们可以总结出几条。

  1. 由5点到4点,将多余的基向量k去掉,得到最大线性无关向量组
  2. 由4点到3点,将两个基向量的夹角变成直角,实现正交化
  3. 由3点到2点,将构成正交的两个基向量旋转,使其与坐标轴重合,实现对角化
  4. 由2点到1点,通过伸缩将两个基向量的长度变成单位长度,实现规范化

通过上面的几个步骤,我们可以看出,任何一组向量构成的坐标系,都可以通过化简,正交,对角,规范的过程,将任何乱七八糟莫名其妙的坐标系变换成笛卡尔坐标系。那这么做有什么用呢?到这里我开了一下脑洞:
假如说,平面内有两个椭圆,将直角坐标系的原点放在一个椭圆的长轴和短轴交点处,这样就可以得到这个椭圆的标准方程,就是高中课本上那个。由于这两个椭圆的位置相对,这样一来另一个椭圆的位置也就定下来了,可惜很难看,长得很歪,很难用方程表示。这时就可以以这个椭圆为原点再建立一个坐标系,并且在这个坐标系下用标准方程表示出来,这样两个椭圆都有了方程来表示,问题就化简为了两个坐标系之间的关系,这时再用矩阵来运算就好了。可惜这里不能画矩阵,关于矩阵的好多问题都不能解释。

时间: 2024-10-07 10:29:17

线性变换的本质的相关文章

【线性变换/矩阵及乘法】- 图解线性代数 03

本文转自公众号---遇见数学---图解数学---线性代数部分 感谢遇见数学工作组将大学课本晦涩难懂.故作高深的数学知识,用通俗易懂而又生动有趣的方法解释出来. 线性变换是线性空间中的运动, 而矩阵就是用来描述这种变换的工具. 这样说还是没有直观印象, 所以还是直接看图解的动画吧. 矩阵不仅仅只是数值的表: 其实表示了在该矩阵的作用下, 线性空间是怎样的变化, 观察下图二维平面中水平和垂直方向的伸缩: 可以看到: 垂直方向并没有发生任何变换(A 的第二列没有变化); 水平方向伸展了 2 倍; 浅红

QT绘图基础(一)

2D绘图 Qt4中的2D绘图部分称为Arthur绘图系统.它由3个类支撑整个框架,QPainter,QPainterDevice和QPainterEngine.QPainter用来执行具体的绘图相关操作如画点,画线,填充,变换,alpha通道等.QPainterDevice是QPainter用来绘图的绘图设备,Qt中有几种预定义的绘图设备,如QWidget,QPixamp,QPrinter等.他们都从QPaintDevice继承.QPaintEngine类提供了不同类型设备的接口,QPaintE

QT 二维图形 原理、发展及应用

转载自 网易博客:sun的博客 http://zhouyang340.blog.163.com/blog/static/3024095920126710504178/ 2D绘图 Qt4中的2D绘图部分称为Arthur绘图系统.它由3个类支撑整个框架,QPainter,QPainterDevice和QPainterEngine.QPainter用来执行具体的绘图相关操作如画点,画线,填充,变换,alpha通道等.QPainterDevice是QPainter用来绘图的绘图设备,Qt中有几种预定义的

线性代数的本质-04补充-三维空间中的线性变换

二维空间向三维空间中扩展,暂且没有感觉有哪些难度,听听视频中是怎么说的? 弹幕刚刚开始,已经有同学理解了矩阵的逆求法的原理,虎躯一震! 按下暂停键思考了一会儿,逆的求法暂且不懂如何变换得来,但是逆的概念应该是反方向变换过程,逆和本身相乘应该是一个没有变换的过程(矩阵考虑成为线性变换),也就是回到最初的初始状态E. 三维矩阵相乘 三维矩阵相乘,同样理解成为线性变换的复合变换,但是并不如二维直观. 原文地址:https://www.cnblogs.com/sky-z/p/9463721.html

关于矩阵的本质

前不久chensh出于不可告人的目的,要充当老师,教别人线性代数.于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次.很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情. 可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊! 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个"前无古人,后无来者"的古怪

线性代数的本质

线性代数的本质 文/冯波 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙. 比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用. 大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,

PCA本质和SVD

一.一些概念 线性相关:其中一个向量可以由其他向量线性表出. 线性无关:其中一个向量不可以由其他向量线性表出,或者另一种说法是找不到一个X不等于0,能够使得AX=0.如果对于一个矩阵A来说它的列是线性无关的,则AX=0,只有0解,此时矩阵A可逆. 秩:线性无关向量个数. 基: 特征向量:向量X经过矩阵A旋转后,与原来的X共线,.即为特征值,表示向量的伸缩.如果把矩阵看成进行线性变化的矩阵(旋转,拉伸),那么特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已.反

行列式的本质是什么?

作者:童哲链接:https://www.zhihu.com/question/36966326/answer/70687817来源:知乎 行列式这个"怪物"定义初看很奇怪,一堆逆序数什么的让人不免觉得恐惧,但其实它是有实际得不能更实际的物理意义的,理解只需要三步.这酸爽~ 1,行列式是针对一个的矩阵而言的.表示一个维空间到维空间的线性变换.那么什么是线性变换呢?无非是一个压缩或拉伸啊.假想原来空间中有一个维的立方体(随便什么形状),其中立方体内的每一个点都经过这个线性变换,变成维空间中

PCA算法详解——本质上就是投影后使得数据尽可能分散(方差最大),PCA可以被定义为数据在低维线性空间上的正交投影,这个线性空间被称为主?空间(principal subspace),使得投影数据的?差被最?化(Hotelling, 1933),即最大方差理论。

PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的