【Todo】Spark学习 & 机器学习(实战部分)

【Todo】Spark学习 & 机器学习(实战部分)的相关文章

【转载】Spark学习 & 机器学习

继续Spark学习,开始的文章:http://www.cnblogs.com/charlesblc/p/6106603.html 参考了这个系列的文章: http://www.cnblogs.com/shishanyuan/p/4699644.html <倾情大奉送--Spark入门实战系列>实验数据下载在上面那篇开始的文章有说明. 先看了上手实验的一部分,因为之前Spark已经安装好了,见 http://www.cnblogs.com/charlesblc/p/6014158.html 上手

机器学习实战读书笔记(三)决策树

3.1 决策树的构造 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据. 缺点:可能会产生过度匹配问题. 适用数据类型:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法 5.测试算法 6.使用算法 3.1.1 信息增益 创建数据集 def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, '

机器学习实战读书笔记(二)k-近邻算法

knn算法: 1.优点:精度高.对异常值不敏感.无数据输入假定 2.缺点:计算复杂度高.空间复杂度高. 3.适用数据范围:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法:不适用 5.测试算法:计算正确率 6.使用算法:需要输入样本和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理. 2.1.1 导入数据 operator是排序时要用的 from numpy import * import operato

Spark机器学习实战视频

深入浅出Spark机器学习实战(用户行为分析) 课程观看地址:http://www.xuetuwuyou.com/course/144 课程出自学途无忧网:http://www.xuetuwuyou.com 一.课程目标  熟练掌握SparkSQL的各种操作,深入了解Spark内部实现原理  深入了解SparkML机器学习各种算法模型的构建和运行  熟练Spark的API并能灵活运用  能掌握Spark在工作当中的运用 二.适合人群  适合给,有java,scala基础,想往大数据spark机器

Python神经网络算法与深度学习视频教程人工智能算法机器学习实战视频教程

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

走在大数据的边缘 基于Spark的机器学习-智能客户系统项目实战(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

Spark机器学习实战 (十一) - 文本情感分类项目实战

0 相关源码 将结合前述知识进行综合实战,以达到所学即所用.文本情感分类这个项目会将分类算法.文本特征提取算法等进行关联,使大家能够对Spark的具体应用有一个整体的感知与了解. 1 项目总体概况 2 数据集概述 数据集 3 数据预处理 4 文本特征提取 官方文档介绍提取,转换和选择特征本节介绍了使用特征的算法,大致分为以下几组: 提取:从"原始"数据中提取特征 转换:缩放,转换或修改特征 选择:从中选择一个子集一组更大的特征局部敏感散列(LSH):这类算法将特征变换的各个方面与其他算

Spark机器学习实战 (十二) - 推荐系统实战

0 相关源码 将结合前述知识进行综合实战,以达到所学即所用.在推荐系统项目中,讲解了推荐系统基本原理以及实现推荐系统的架构思路,有其他相关研发经验基础的同学可以结合以往的经验,实现自己的推荐系统. 1 推荐系统简介 1.1 什么是推荐系统 1.2 推荐系统的作用 1.2.1 帮助顾客快速定位需求,节省时间 1.2.2 大幅度提高销售量 1.3 推荐系统的技术思想 1.3.1 推荐系统是一种机器学习的工程应用 1.3.2 推荐系统基于知识发现原理 1.4 推荐系统的工业化实现 Apache Spa

《机器学习实战》学习笔记:k-近邻算法实现

上一学期主要的学习和研究任务是模式识别.信号理论和图像处理,实际上这些领域都与机器学习有或多或少的交集.因此,仍在继续深入阅读<机器学习>.观看斯坦福大学的机器学习课程.在此过程中因为未来课题组项目的要求,需要接触Python,因此选择了<机器学习实战>这本书,同时参考教材和视频一起学习.事实上该书的理论研究不够深入,只能算是练习Python并验证一些著名的机器学习算法的工具书了. 在介绍k-近邻算法之前,对机器学习算法进行简单的分类和梳理:简单来说,机器学习主要分为两大类,有监督