bzoj 4872: [Shoi2017]分手是祝愿

Description

Zeit und Raum trennen dich und mich.

时空将你我分开。B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为

从 1 到 n 的正整数。每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏

的目标是使所有灯都灭掉。但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被

改变,即从亮变成灭,或者是从灭变成亮。B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机

操作一个开关,直到所有灯都灭掉。这个策略需要的操作次数很多, B 君想到这样的一个优化。如果当前局面,

可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个

策略显然小于等于 k 步)操作这些开关。B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使

用操作次数最小的操作方法)的操作次数的期望。这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定

是整数,所以他只需要知道这个整数对 100003 取模之后的结果。

Input

第一行两个整数 n, k。

接下来一行 n 个整数,每个整数是 0 或者 1,其中第 i 个整数表示第 i 个灯的初始情况。

1 ≤ n ≤ 100000, 0 ≤ k ≤ n;

Output

输出一行,为操作次数的期望乘以 n 的阶乘对 100003 取模之后的结果。

Sample Input

4 0

0 0 1 1

Sample Output

512

HINT

Source

黑吉辽沪冀晋六省联考

首先k=n的部分分;

考虑到如果要把第n号灯熄灭,那么一定要关第n号灯,同理我们可以从后往前地选择,然后每次sqrt(n)地修改一下每盏灯的状态;

由于每个开关按了两次等于没有按,所以每个开关最多是会按一次,而且通过从后往前的贪心策略,最优的方案是唯一的,但是无关顺序;

那么我们设f[i]为还需要按i步的期望步数,由于最优的方案是确定的,所以我们需要判断这一次随机的开关是否在既定的i步之中;

如果是既定的i步之中的开关,那么步数-1,如果按的是方案之外的开关,因为我们的最优策略是唯一的,所以我们需要再按一次来撤回这一次失误,所以转移大致是这样:

这个貌似不能直接递推,

我们考虑将f[]数组差分,设g[i]=f[i]-f[i-1];

那么我们得出g数组的递推式:

推到过程就是把f[i]用f的递推式表示,然后在把差值用g[i+1]表示之类的;

那么我们的答案为f[p]*n!,其中p为最小的操作步数;

//MADE BY QT666
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define int long long
using namespace std;
typedef long long ll;
const int N=100050;
const int mod=100003;
int a[N],n,k,p;
ll g[N];
ll qpow(ll x,ll y){
    ll ret=1;
    while(y){
	if(y&1) (ret*=x)%=mod;
	(x*=x)%=mod;y>>=1;
    }
    return ret;
}
main(){
    scanf("%lld%lld",&n,&k);
    for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
    for(int i=n;i;i--){
	if(a[i]){
	    p++;
	    for(int j=1;j<=sqrt(i);j++){
		if(i%j==0){
		    if(j*j==i) a[j]^=1;
		    else a[j]^=1,a[i/j]^=1;
		}
	    }
	}
    }
    if(p<=k) {
	int ans=p;
	for(int i=1;i<=n;i++) (ans*=i)%=mod;
	cout<<ans<<endl;return 0;
    }
    g[n+1]=0;
    for(int i=n;i;i--) g[i]=(g[i+1]*(n-i)+n)*qpow(i,mod-2)%mod;
    int ans=k;
    for(int i=k+1;i<=p;i++) ans+=g[i];
    for(int i=1;i<=n;i++) (ans*=i)%=mod;
    printf("%lld\n",ans);
    return 0;
}
时间: 2024-11-10 12:31:01

bzoj 4872: [Shoi2017]分手是祝愿的相关文章

【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP

[题意]给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反.每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数.n,k<=10^5. [算法]期望DP [题解]对于当前状态,编号最大的亮灯必须通过操作自身灭掉. 证明:假设通过操作编号更大的灯灭掉,那么编号更大的灯只能通过操作自己灭掉,则与原来状态无区别,得证. 运用这个结论,每次灭掉最大编号的灯后的局面中,编号最大的灯一定严格小于原最大灯,所以至多需要n次操作. 从大到小,处理出m盏待操作灯,这样

BZOJ4872: [Shoi2017]分手是祝愿

4872: [Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 到 n 的正整数.每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏 的目标是使所有灯都灭掉.但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被 改变,即从亮变成灭,

【bzoj4872】[Shoi2017]分手是祝愿 数论+期望dp

题目描述 Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为从 1 到 n 的正整数.每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏的目标是使所有灯都灭掉.但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被改变,即从亮变成灭,或者是从灭变成亮.B 君发现这个游戏很难,于是想到了这样的一个

bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿

http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关至多操作1次,(连带着的灯的亮灭改变不算) 设最优解 需要操作cnt次,那么就有cnt盏灯是正确的选择 设 f[i] 表示 有i种正确的选择  变为 有i-1种正确的选择 的 期望次数 那么在n盏灯中,有i盏灯操作1次 就可以 减少一次正确选择 有n-i盏灯是错误的选择,选了它还要把它还原,还原它也

【BZOJ4872】分手是祝愿(动态规划,数学期望)

[BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至少要关\(tot\)次 如果一个灯被动两次以上是没有任何意义的 所以,相当于,要动的灯只有\(tot\)个 其他的是没有任何意义的 所以,题面可以变为: 现在有\(tot\)个\(1\),\(n-tot\)个\(0\) 每次随机选择一个数将其异或\(1\) 求最终变为\(0\)的期望 我们现在考虑一

bzoj 4871: [Shoi2017]摧毁“树状图”

4871: [Shoi2017]摧毁“树状图” Time Limit: 25 Sec  Memory Limit: 512 MBSubmit: 53  Solved: 9[Submit][Status][Discuss] Description 自从上次神刀手帮助蚯蚓国增添了上千万人口(蚯口?),蚯蚓国发展得越来越繁荣了!最近,他们在地下发现了 一些神奇的纸张,经过仔细研究,居然是D国X市的超级计算机设计图纸!这台计算机叫做‘树状图’,由n个计算 节点与n1条可以双向通信的网线连接而成,所有计算

BZOJ:4873: [Shoi2017]寿司餐厅

4873: [Shoi2017]寿司餐厅 首先很开心在膜你赛的时候做了出来. 看到数据范围,看到不能dp,看到贡献去重后计算,咦,流? 那就容易了,转最大权闭合子图,每个区间建一个点,取了就一定要取他的子区间(依赖关系),代价上也很容易用依赖关系搞. 提交完A了就没理,后来同学说我#1了??? #include<cstdio> #include<algorithm> #define MN 40001 using namespace std; int read_p,read_ca,r

BZOJ 4873 [Shoi2017]寿司餐厅 | 网络流 最大权闭合子图

链接 BZOJ 4873 题解 当年的省选题--还记得蒟蒻的我Day1 20分滚粗-- 这道题是个最大权闭合子图的套路题.严重怀疑出题人就是先画好了图然后照着图编了个3000字的题面.和我喜欢的妹子当年给别人写的情书一样长-- 最大权闭合子图 最大权闭合子图问题:一个有向图中,每个点带有一个权值(有正有负),有向边\(u \to v\)表示选\(u\)必须选\(v\),选出一些点使权值和最大,问权值和最大是多少. 最大权闭合子图的解法:网络流建图,对于每个点\(u\),设权值为\(w_u\),如

BZOJ 4868 [Shoi2017]期末考试 ——三分 枚举

考场上xjb三分过掉了. 然后$sdfzyhx$.$silvernebula$ $O(n)$虐掉了. 我还是太菜了 #include <cstdio> #include <cmath> #include <queue> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=