神经网络在解决一些复杂的非线性分类问题时,相对于线性回归、逻辑回归,都被证明是一个更好的算法。其实神经网络也可以看做的逻辑回归的组合(叠加,级联等)。
一个典型神经网络的模型如下图所示:
上述模型由3个部分组成:输入层、隐藏层、输出层。其中输入层输入特征值,输出层的输出作为我们分类的依据。例如一个20*20大小的手写数字图片的识别举例,那么输入层的输入便可以是20*20=400个像素点的像素值,即模型中的a1;输出层的输出便可以看做是该幅图片是0到9其中某个数字的概率。而隐藏层、输出层中的每个节点其实都可以看做是逻辑回归得到的。逻辑回归的模型可以看做这样(如下图所示):
有了神经网络的模型,我们的目的就是求解模型里边的参数theta,为此我们还需知道该模型的代价函数以及每一个节点的“梯度值”。
代价函数的定义如下:
代价函数关于每一个节点处theta的梯度可以用反向传播算法计算出来。反向传播算法的思想是由于我们无法直观的得到隐藏层的输出,但我们已知输出层的输出,通过反向传播,倒退其参数。
我们以以下模型举例,来说明反向传播的思路、过程:
该模型与给出的第一个模型不同的是,它具有两个隐藏层。
为了熟悉这个模型,我们需要先了解前向传播的过程,对于此模型,前向传播的过程如下:
其中,a1,z2等参数的意义可以参照本文给出的第一个神经网络模型,类比得出。
然后我们定义误差delta符号具有如下含义(之后推导梯度要用):
误差delta的计算过程如下:
然后我们通过反向传播算法求得节点的梯度,反向传播算法的过程如下:
有了代价函数与梯度函数,我们可以先用数值的方法检测我们的梯度结果。之后我们就可以像之前那样调用matlab的fminunc函数求得最优的theta参数。
需要注意的是,在初始化theta参数时,需要赋予theta随机值,而不能是固定为0或是什么,这就避免了训练之后,每个节点的参数都是一样的。
下面给出计算代价与梯度的代码:
[plain] view plaincopy
- function [J grad] = nnCostFunction(nn_params, ...
- input_layer_size, ...
- hidden_layer_size, ...
- num_labels, ...
- X, y, lambda)
- %NNCOSTFUNCTION Implements the neural network cost function for a two layer
- %neural network which performs classification
- % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
- % X, y, lambda) computes the cost and gradient of the neural network. The
- % parameters for the neural network are "unrolled" into the vector
- % nn_params and need to be converted back into the weight matrices.
- %
- % The returned parameter grad should be a "unrolled" vector of the
- % partial derivatives of the neural network.
- %
- % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
- % for our 2 layer neural network
- Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
- hidden_layer_size, (input_layer_size + 1));
- Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
- num_labels, (hidden_layer_size + 1));
- % Setup some useful variables
- m = size(X, 1);
- % You need to return the following variables correctly
- J = 0;
- Theta1_grad = zeros(size(Theta1));
- Theta2_grad = zeros(size(Theta2));
- % ====================== YOUR CODE HERE ======================
- % Instructions: You should complete the code by working through the
- % following parts.
- %
- % Part 1: Feedforward the neural network and return the cost in the
- % variable J. After implementing Part 1, you can verify that your
- % cost function computation is correct by verifying the cost
- % computed in ex4.m
- %
- % Part 2: Implement the backpropagation algorithm to compute the gradients
- % Theta1_grad and Theta2_grad. You should return the partial derivatives of
- % the cost function with respect to Theta1 and Theta2 in Theta1_grad and
- % Theta2_grad, respectively. After implementing Part 2, you can check
- % that your implementation is correct by running checkNNGradients
- %
- % Note: The vector y passed into the function is a vector of labels
- % containing values from 1..K. You need to map this vector into a
- % binary vector of 1‘s and 0‘s to be used with the neural network
- % cost function.
- %
- % Hint: We recommend implementing backpropagation using a for-loop
- % over the training examples if you are implementing it for the
- % first time.
- %
- % Part 3: Implement regularization with the cost function and gradients.
- %
- % Hint: You can implement this around the code for
- % backpropagation. That is, you can compute the gradients for
- % the regularization separately and then add them to Theta1_grad
- % and Theta2_grad from Part 2.
- %
- J_tmp=zeros(m,1);
- for i=1:m
- y_vec=zeros(num_labels,1);
- y_vec(y(i))=1;
- a1 = [ones(1, 1) X(i,:)]‘;
- z2=Theta1*a1;
- a2=sigmoid(z2);
- a2=[ones(1,size(a2,2)); a2];
- z3=Theta2*a2;
- a3=sigmoid(z3);
- hThetaX=a3;
- J_tmp(i)=sum(-y_vec.*log(hThetaX)-(1-y_vec).*log(1-hThetaX));
- end
- J=1/m*sum(J_tmp);
- J=J+lambda/(2*m)*(sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2)));
- Delta1 = zeros( hidden_layer_size, (input_layer_size + 1));
- Delta2 = zeros( num_labels, (hidden_layer_size + 1));
- for t=1:m
- y_vec=zeros(num_labels,1);
- y_vec(y(t))=1;
- a1 = [1 X(t,:)]‘;
- z2=Theta1*a1;
- a2=sigmoid(z2);
- a2=[ones(1,size(a2,2)); a2];
- z3=Theta2*a2;
- a3=sigmoid(z3);
- delta_3=a3-y_vec;
- gz2=[0;sigmoidGradient(z2)];
- delta_2=Theta2‘*delta_3.*gz2;
- delta_2=delta_2(2:end);
- Delta2=Delta2+delta_3*a2‘;
- Delta1=Delta1+delta_2*a1‘;
- end
- Theta1_grad=1/m*Delta1;
- Theta2_grad=1/m*Delta2;
- Theta1(:,1)=0;
- Theta1_grad=Theta1_grad+lambda/m*Theta1;
- Theta2(:,1)=0;
- Theta2_grad=Theta2_grad+lambda/m*Theta2;
- % -------------------------------------------------------------
- % =========================================================================
- % Unroll gradients
- grad = [Theta1_grad(:) ; Theta2_grad(:)];
- end
最后总结一下,对于一个典型的神经网络,训练过程如下:
按照这个步骤,我们就可以求得神经网络的参数theta。
转载请注明出处:http://blog.csdn.net/u010278305