POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解

扩展欧几里得算法模板

#include <cstdio>
#include <cstring>
#define ll long long

using namespace std;

ll extend_gcd(ll a, ll b, ll &x, ll &y)
{
    if(b == 0)
    {
        x = 1, y = 0;
        return a;
    }
    else
    {
        ll r = extend_gcd(b, a%b, y, x);
        y -= x*(a/b);
        return r;
    }
}

1.对于形如a*x0 + b*y0 = n的不定方程为了求解x0和y0,可以通过扩展欧几里得先求出满足a*x + b*y = gcd(a, b)的x和y。

2.容易得到,若(x-y)%gcd(a,b)==0,则该不定方程有整数解,否则无符合条件的整数解。

3.得到x和y后,可以通过x0 = x*n / gcd(a, b)这个x0相当关键,求出x0.

4.在实际问题当中,我们需要的往往是最小整数解,我们可以通过下面的方法求出最小整数解:

    令t = b/gcd(a, b),x是方程a*x + b*y = n的一个特解,则xmin = (x % t + t) % t

                       青蛙的约会

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 113227   Accepted: 23091

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

分析:

当两只青蛙跳t步后,A的坐标为x+mt-p1L(p1∈Z且x+mt-p1L<L),B的坐标为y+nt-p2L(p2∈Z且y+nt-p2L<L), A和B相遇的充分必要条件是x+mt-p1L = y+nt-p2L。

整理可得 (x-y) + (m-n)t = (p1-p2)L, 即 (n-m)t + (p1-p2)L = x-y

设p = p1 - p2 整理得 (n-m) * t + L * p = x-y

看出a * x + b * y = gcd(a, b)的样子了没?

调用extend_gcd(n-m, L, t, p)可以算出gcd(n-m, L), t, p。之后再用上面的方法算出最小整数解就可以了。

#include "cstdio"
#include "iostream"
using namespace std;
#define LL long long
LL extgcd(LL a,LL b,LL&x,LL&y)///模板
{
    if(b==0){
        x=1;y=0;
        return a;
    }
    LL ans=extgcd(b,a%b,y,x);
    y-=a/b*x;
    return ans;
}

int main()
{
    LL n,m,t,l,x,y,p;
    while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
    {
        LL ans=extgcd(n-m,l,t,p);
        if((x-y)%ans){///1.
            printf("Impossible\n");
        }
        else
        {
            ///求最小整数解的算法
            t=(x-y)/ans*t;///首先令x为一个特解  2.
            LL temp=(l/ans);
            t=(t%temp+temp)%temp;///再根据公式计算  3.
            printf("%lld\n",t);
        }
    }
}
总结:对于此类题,我们需要做的是,1.看懂公式熟记公式        2.吸收这份来自数学的伟大力量
时间: 2024-10-16 13:43:12

POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解的相关文章

POJ1061——青蛙的约会(扩展欧几里德)

青蛙的约会 Description两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面.

POJ1061青蛙的约会[扩展欧几里得]

青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 108911   Accepted: 21866 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总

poj 1061 青蛙的约会 扩展欧几里德

青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K       Description 两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它 们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去, 总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不

[poj1061]青蛙的约会&lt;扩展欧几里得&gt;

题目链接:http://poj.org/problem?id=1061 其实欧几里得我一直都知道,只是扩展欧几里得有点蒙,所以写了一道扩展欧几里得裸题. 欧几里得算法就是辗转相除法,求两个数的最大公约数,算法是,a,b的最大公约数是gcd(b,a%b)然后不断递归下去,直到b=0 转换成c++语言就是 1 int ex_gcd(int a,int b) 2 { 3 if(b==0)return a; 4 return ex_gcd(b,a%b); 5 } 扩展欧几里得就是假设c=gcd(a,b)

扩展欧几里德算法求逆元3

1 int gcd(int x3,int y3) 2 { 3 int x1 = 1,x2 = 0,y1 = 0,y2 = 1; 4 while(1) 5 { 6 if (y3==1) return y2; 7 int q=x3/y3; 8 int t1=x1-q*y1,t2=x2-q*y2,t3=x3-q*y3; 9 x1 = y1,x2 = y2,x3 = y3; 10 y1 = t1,y2 = t2,y3 = t3; 11 } 12 }

poj2115-C Looooops(扩展欧几里德算法)

本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循环几次才会结束. 比如:当k=4时,存储的数 i 在0-15之间循环.(本题默认为无符号) 若在有限次内结束,则输出循环次数. 否则输出死循环.二,思路: 本题利用扩展欧几里德算法求线性同余方程,设循环次数为 x ,则解方程 (A + C*x) % 2^k = B ;求出最小正整数 x. 1,化简方

【zz】欧几里德与扩展欧几里德算法相关

关于欧几里德与扩展欧几里德算法在此附上我自学的时用的网站:感谢:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 这里我会结合该大牛的成果以及自己的收获总结一下: 欧几里德算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 证明: a可以表示成a = kb +

欧几里德与扩展欧几里德算法(转)

欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a

欧几里德与扩展欧几里德算法

转自网上大牛博客,讲的浅显易懂. 原文地址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有