51nod 1574 排列转换(贪心+鸽巢原理)

题意:有两个长度为n的排列p和s。要求通过交换使得p变成s。交换 pi 和 pj 的代价是|i-j|。要求使用最少的代价让p变成s。

考虑两个数字pi和pj,假如交换他们能使得pi到目标的距离减少,pj到目标的距离减少。那么应该交换他们,这是一个必要的操作,也是答案的下界。

如果每一次都能找到这样的两个数字,那么答案就是排列p中的每个数字在排列s的位置的距离差之和/2.这显然是答案的下界。

现在考虑证明这个下界是可以构造出来的。

考虑排列p中最后一个位置不对的数字,不妨设为pj,他的目标位置是pi,那么如果p[i+1,j]中有任意一个数的目标是pk(k<i),那么可以进行必要交换。

假设没有这样的一个数字使得他的目标是pk,一共有(j-i-1)个数,(j-i-2)个空,根据鸽巢原理,显然不存在这样的情况。

也就是说,对于排列p中最后一个位置不对的数字pj,目标位置是pi,pi总能在p[i+1,j]中找到一个数字pk,使得它们交换之后到目标的距离都减小了。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-8
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int x=0,f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
const int N=200005;
//Code begin...

int a[N];

int main ()
{
    int n, x;
    LL ans=0;
    scanf("%d",&n);
    FOR(i,1,n) scanf("%d",&x), a[x]=i;
    FOR(i,1,n) scanf("%d",&x), ans+=abs(a[x]-i);
    printf("%lld\n",ans/2);
    return 0;
}

时间: 2024-12-11 01:28:14

51nod 1574 排列转换(贪心+鸽巢原理)的相关文章

51nod 1574 排列转换

分析: 大佬们也有搞错的时候,说把s重排一下,求逆序数对就行了: 这个是相邻两两交换: 正解: 是将所有没有在正确位置的数,他们一次性到达他正确的位置,没有浪费: 1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 const int maxn = 200000 + 5; 6 int a[maxn]; 7 int b[maxn]; 8 bool vis[maxn]; 9 10 int main() 11 { 12 int n; 13

HDU3183(RMQ+鸽巢原理)

题目的意思是对于一个n位数,删除m个位后,得到的最小数是什么,比如12345 2,删除两个位,得到最小的就是123.实际上这题目解法很多,好像有贪心,线段树,RMQ等,因为我最近在学习RMQ,所以就用RMQ了. 这题目用了一个鸽巢原理,得到的m-n位数的第一位,必然出现在1~m-n+1,这个由鸽巢原理就十分明显了(如果1~n-(m-n)+1都没有的话,剩下的m-n-1个位是不可能凑出m-n个位的数的!)这样我们就可以从[1,n-(m-n)+1]中作RMQ取得最小值下标i,之后对于i+1后,m-n

[HDU1205]吃糖果 题解(鸽巢原理)

[HDU1205]吃糖果 Description -HOHO,终于从Speakless手上赢走了所有的糖果,是Gardon吃糖果时有个特殊的癖好,就是不喜欢将一样的糖果放在一起吃,喜欢先吃一种,下一次吃另一种,这样:可是Gardon不知道是否存在一种吃糖果的顺序使得他能把所有糖果都吃完?请你写个程序帮忙计算一下. -Input:第一行有一个整数T,接下来T组数据,每组数据占2行,第一行是一个整数N(0<N<=1000000),第二行是N个数,表示N种糖果的数目Mi(0<Mi<=10

鸽巢原理简单应用

http://poj.org/problem?id=2356 从n个数里面取出一些数,这些数的和是n的倍数.并输出这些数. 先预处理出前n个数的和用sum[i]表示前i个数的和.若某个sum[i]是n的倍数,直接输出前i个数即可. 否则说明n个数中对n取余的结果有n-1种,即余数为(1~n-1),根据鸽巢原理知必定至少存在两个sum[i]与sum[j]对n取余的结果相等.那么i+1 ~ j之间的数之和一定是n的倍数. #include <stdio.h> #include <iostre

poj 2356 Find a multiple 鸽巢原理的简单应用

题目要求任选几个自然数,使得他们的和是n的倍数. 由鸽巢原理如果我们只选连续的数,一定能得到解. 首先预处理前缀和模n下的sum,如果发现sum[i]==sum[j] 那么(sum[j]-sum[i])%n一定为0,直接输出i+1~j就够了. 为什么一定会有解,因为sum从1~n有n个数,而模n下的数只有0~n-1,把n个数放入0~n-1个数里,怎么也会有重复,所以这种构造方法一定没问题. 其实可以O(n)实现,嫌麻烦,就二重循环无脑了. #include <iostream> #includ

鸽巢原理-poj3370

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 #include <stdio.h> int main(int argc, char *argv[]) {         int c = -1, n = -1;         while (true) {         scanf("%d%d",

骚操作之鸽巢原理

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果.这一现象就是我们所说的"抽屉原理". 抽屉原理的一般含义为:"如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素." 抽屉原理有时也被称为鸽巢原理.它是组合数学中一个重要的原理. 在acm中也是会遇到的,比如两个人对打的得分问题 110个人参加一个国际象棋单循环比赛,每两人都进行一局比赛,

HDU 1205.吃糖果【鸽巢原理】【8月1】

吃糖果 Problem Description HOHO,终于从Speakless手上赢走了所有的糖果,是Gardon吃糖果时有个特殊的癖好,就是不喜欢将一样的糖果放在一起吃,喜欢先吃一种,下一次吃另一种,这样:可是Gardon不知道是否存在一种吃糖果的顺序使得他能把所有糖果都吃完?请你写个程序帮忙计算一下. Input 第一行有一个整数T,接下来T组数据,每组数据占2行,第一行是一个整数N(0<N<=1000000),第二行是N个数,表示N种糖果的数目Mi(0<Mi<=10000

POJ 2356 Find a multiple 鸽巢原理

题目来源:POJ 2356 Find a multiple 题意:n个数 选出任意个数 使得这些数的和是n的倍数 思路:肯定有解 并且解是连续的一段数 证明: 假设有m个数 a1,a2,a3...am    s1 s2 s3...sm为前缀和 s1 = a1 s2 = a1+a2 s3 = a1+a2+a3... sm = a1+a2+a3+...+am 1.如果某个前缀和si%m == 0 那么得到解 2.设x1=s1%m x2 = s2%m x3 = s3%m xm = sm%m 因为1不成