算法导论------------基本数据结构之二叉树

1、二叉树的定义

  二叉树(Binary Tree)是一种特殊的树型结构,每个节点至多有两棵子树,且二叉树的子树有左右之分,次序不能颠倒。

  由定义可知,二叉树中不存在度(结点拥有的子树数目)大于2的节点。二叉树形状如下下图所示:

2、二叉树的性质

(1)在二叉树中的第i层上至多有2^(i-1)个结点(i>=1)。备注:^表示此方

(2)深度为k的二叉树至多有2^k-1个节点(k>=1)。

(3)对任何一棵二叉树T,如果其终端结点数目为n0,度为2的节点数目为n2,则n0=n2+1。

满二叉树:深度为k且具有2^k-1个结点的二叉树。即满二叉树中的每一层上的结点数都是最大的结点数。

完全二叉树:深度为k具有n个结点的二叉树,当且仅当每一个结点与深度为k的满二叉树中的编号从1至n的结点一一对应。

可以得到一般结论:满二叉树和完全二叉树是两种特殊形态的二叉树,满二叉树肯定是完全二叉树,但完全二叉树不不一定是满二叉树。

举例如下图是所示:

(4)具有n个节点的完全二叉树的深度为log2n + 1。

3、二叉树的存储结构

  可以采用顺序存储数组和链式存储二叉链表两种方法来存储二叉树。经常使用的二叉链表方法,因为其非常灵活,方便二叉树的操作。二叉树的二叉链表存储结构如下所示:

1 typedef struct binary_tree_node
2 {
3     int elem;
4     struct binary_tree_node *left;
5     struct binary_tree_node *right;
6 }binary_tree_node,*binary_tree;

举例说明二叉链表存储过程,如下图所示:

从图中可以看出:在还有n个结点的二叉链表中有n+1个空链域。

4、遍历二叉树

  遍历二叉树是按照指定的路径方式访问书中每个结点一次,且仅访问一次。由二叉树的定义,我们知道二叉数是由根结点、左子树和右子树三部分构成的。通常遍历二叉树是从左向右进行,因此可以得到如下最基本的三种遍历方法:

(1)先根遍历(先序遍历):如果二叉树为空,进行空操作;否则,先访问根节点,然后先根遍历左子树,最后先根遍历右子树。采用递归形式实现代码如下:

1 void preorder_traverse_recursive(binary_tree root)
2 {
3     if(NULL != root)
4     {
5         printf("%d\t",root->elem);
6         preorder_traverse_recursive(root->left);
7         preorder_traverse_recursive(root->right);
8     }
9 }

具体过程如下图所示:

(2)中根遍历(中序遍历):如果二叉树为空,进行空操作;否则,先中根遍历左子树,然后访问根结点,最后中根遍历右子树。递归过程实现代码如下:

1 void inorder_traverse_recursive(binary_tree root)
2 {
3     if(NULL != root)
4     {
5         inorder_traverse_recursive(root->left);
6         printf("%d\t",root->elem);
7         inorder_traverse_recursive(root->right);
8     }
9 }

具体过程如下图所示:

(3)后根遍历(后序遍历):如果二叉树为空,进行空操作;否则,先后根遍历左子树,然后后根遍历右子树,最后访问根结点。递归实现代码如下:

1 void postorder_traverse_recursive(binary_tree root)
2 {
3     if(NULL != root)
4     {
5         postorder_traverse_recursive(root->left);
6         postorder_traverse_recursive(root->right);
7         printf("%d\t",root->elem);
8     }
9 }

具体过程如下图所示:

  写一个完整的程序练习二叉树的三种遍历,采用递归形式创建二叉树,然后以递归的形式遍历二叉树,后面会接着讨论如何使用非递归形式实现这三种遍历,程序采用C语言实现,完整程序如下:

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3
 4 //the structure of binary tree
 5 typedef struct binary_tree_node
 6 {
 7     int elem;
 8     struct binary_tree_node *left;
 9     struct binary_tree_node *right;
10 }binary_tree_node,*binary_tree;
11
12 void init_binary_tree(binary_tree *root);
13 void create_binary_tree(binary_tree *root);
14
15 //previous root
16 void preorder_traverse_recursive(binary_tree root);
17 //inorder root
18 void inorder_traverse_recursive(binary_tree root);
19 //post order root
20 void postorder_traverse_recursive(binary_tree root);
21
22 int main()
23 {
24     binary_tree root;
25    init_binary_tree(&root);
26     create_binary_tree(&root);
27     preorder_traverse_recursive(root);
28     inorder_traverse_recursive(root);
29     postorder_traverse_recursive(root);
30     exit(0);
31 }
32
33 void init_binary_tree(binary_tree *root)
34 {
35     *root = NULL;
36 }
37
38 void create_binary_tree(binary_tree* root)
39 {
40     int elem;
41     printf("Enter the node value(0 is end): ");
42     scanf("%d",&elem);
43     if(elem == 0)
44         *root = NULL;
45     else
46     {
47         *root = (binary_tree)malloc(sizeof(binary_tree_node));
48         if(NULL == root)
49         {
50              printf("malloc error.\n");
51              exit(-1);
52         }
53         (*root)->elem = elem;
54         printf("Creating the left child node.\n");
55         create_binary_tree(&((*root)->left));
56         printf("Createing the right child node.\n");
57         create_binary_tree(&((*root)->right));
58     }
59 }
60
61 void preorder_traverse_recursive(binary_tree root)
62 {
63     if(NULL != root)
64     {
65         printf("%d\t",root->elem);
66         preorder_traverse_recursive(root->left);
67         preorder_traverse_recursive(root->right);
68     }
69 }
70
71 void inorder_traverse_recursive(binary_tree root)
72 {
73     if(NULL != root)
74     {
75         inorder_traverse_recursive(root->left);
76         printf("%d\t",root->elem);
77         inorder_traverse_recursive(root->right);
78     }
79 }
80
81 void postorder_traverse_recursive(binary_tree root)
82 {
83     if(NULL != root)
84     {
85         postorder_traverse_recursive(root->left);
86         postorder_traverse_recursive(root->right);
87         printf("%d\t",root->elem);
88     }
89 }

程序测试结果如下:

  现在来讨论一下如何采用非递归实现这以上三种遍历。将递归形式转换为非递归形式,引入了额外的辅助结构栈。另外在讨论一次二叉树的层次遍历,可以借助队列进行实现。具体讨论如下:

(1)先根遍历非递归实现

  先根遍历要求顺序是根左右,可以借助栈s来实现。先将根root入栈,然后循环判断s是否为空,非空则将结点出栈,记为节点p,然后依次先将结点p的右子树结点入栈,然后将结点p的左子树结点入栈,循环操作直到栈中所有元素都出栈为止,出栈顺序即是先根遍历的结果。采用C++中模板库stack实现先根遍历如下:

 1 void preorder_traverse(binary_tree root)
 2 {
 3     if(NULL != root)
 4     {
 5         stack<binary_tree_node*> s;
 6         binary_tree_node *ptmpnode;
 7         s.push(root);
 8         while(!s.empty())
 9         {
10             ptmpnode = s.top();
11             cout<<ptmpnode->elem<<" ";
12             s.pop();
13             if(NULL != ptmpnode->right)
14                 s.push(ptmpnode->right);
15             if(NULL != ptmpnode->left)
16                 s.push(ptmpnode->left);
17
18         }
19     }
20 }

(2)中根遍历非递归实现

  中根遍历要求顺序是左根右,借助栈s实现。先将根root入栈,接着从根root开始查找最左的子孩子结点直到为空为止,然后将空节点出栈,再将左子树节点出栈遍历,然后判断该左子树的右子树节点入栈。循环此过程,直到栈为空为止。此时需要注意的是入栈过程中空结点也入栈了,用以判断左孩子是否结束和左孩子是否有右孩子结点。采用C++中模板库stack实现先根遍历如下:

 1 void inorder_traverse(binary_tree root)
 2 {
 3     if(NULL != root)
 4     {
 5         stack<binary_tree_node*> s;
 6         binary_tree_node *ptmpnode;
 7         s.push(root);
 8         while(!s.empty())
 9         {
10             ptmpnode = s.top();
11             while(NULL != ptmpnode)
12             {
13                 s.push(ptmpnode->left);
14                 ptmpnode = s.top();
15             }
16             s.pop();//空结点出栈
17             if(!s.empty())
18             {
19                 ptmpnode = s.top();
20                 cout<<ptmpnode->elem<<" ";
21                 s.pop();
22                 //右子树结点如栈
23                 s.push(ptmpnode->right);
24             }
25         }
26     }
27 }

另外一种简洁的实现方法如下:

 1 void inorder_traverse_two(binary_tree root)
 2 {
 3     if(NULL != root)
 4     {
 5         stack<binary_tree_node*> s;
 6         binary_tree_node *ptmpnode;
 7         ptmpnode = root;
 8         while(NULL != ptmpnode || !s.empty())
 9         {
10             //将左子树结点入栈
11             if(NULL != ptmpnode)
12             {
13                 s.push(ptmpnode);
14                 ptmpnode = ptmpnode->left;
15             }
16             else
17             {
18                 //出栈遍历
19                 ptmpnode = s.top();
20                 s.pop();
21                 cout<<ptmpnode->elem<<" ";
22                 //右子树结点
23                 ptmpnode = ptmpnode->right;
24             }
25         }
26     }
27 }

(3)后根遍历递归实现

  后根遍历要求访问顺序是左右根,采用辅助栈实现时,需要一个标记,判断结点是否访问了,因为右子树是通过跟结点的信息得到的。实现过程是先将根结点及其左子树入栈,并初始标记为0,表示没有访问,然后通过判断栈是否为空和标记的值是否为1来判断是否访问元素。

参考:http://www.cnblogs.com/hicjiajia/archive/2010/08/27/1810055.html

采用C++模板库stack具体实现程序如下:

 1 void postorder_traverse(binary_tree root)
 2 {
 3     if(NULL != root)
 4     {
 5         stack<binary_tree_node*> s;
 6         binary_tree_node *ptmpnode;
 7         int flags[100];
 8         ptmpnode = root;
 9         while(NULL != ptmpnode || !s.empty())
10         {
11             //将结点左子树结点入栈
12             while(NULL != ptmpnode)
13             {
14                 s.push(ptmpnode);
15                 flags[s.size()] = 0;   //标记未访问
16                 ptmpnode=ptmpnode->left;
17             }
18             //输出访问的结点
19             while(!s.empty() && flags[s.size()] == 1)
20             {
21                 ptmpnode = s.top();
22                 s.pop();
23                 cout<<ptmpnode->elem<<" ";
24             }
25             //从右子树开始遍历
26             if(!s.empty())
27             {
28                 ptmpnode = s.top();
29                 flags[s.size()] = 1;  //登记访问了
30                 ptmpnode = ptmpnode->right;
31             }
32             else
33                 break;
34         }
35     }
36 }

(4)层次遍历实现

  层次遍历要求从根向下、从左向右进行访问,可以采用队列实现。先将根入队,然后队列进程出队操作访问结点p,再将结点p的左子树和右子树结点入队,循环执行此过程直到队列为空。出队顺序即是层次遍历结果。采用C++的模板库queue实现如下:

 1 void levelorder_traverse(binary_tree root)
 2 {
 3     if(NULL != root)
 4     {
 5         queue<binary_tree_node*> q;
 6         binary_tree_node *ptmpnode;
 7         q.push(root);
 8         while(!q.empty())
 9         {
10             ptmpnode = q.front();
11             q.pop();
12             cout<<ptmpnode->elem<<" ";
13             if(NULL != ptmpnode->left)
14                 q.push(ptmpnode->left);
15             if(NULL != ptmpnode->right)
16                 q.push(ptmpnode->right);
17         }
18     }
19 }

综合上面的分析过程写个完整的程序测试二叉树遍历的非递归实现,采用C++语言,借助stack和queue实现,完整程序如下所示:

  1 #include <iostream>
  2 #include <stack>
  3 #include <queue>
  4 #include <cstdlib>
  5 using namespace std;
  6
  7 typedef struct binary_tree_node
  8 {
  9     int elem;
 10     struct binary_tree_node *left;
 11     struct binary_tree_node *right;
 12 }binary_tree_node,*binary_tree;
 13
 14 void init_binary_tree(binary_tree *root);
 15 void create_binary_tree(binary_tree *root);
 16 void preorder_traverse(binary_tree root);
 17 void inorder_traverse(binary_tree root);
 18 void inorder_traverse_two(binary_tree root);
 19 void postorder_traverse(binary_tree root);
 20 void levelorder_traverse(binary_tree root);
 21
 22 int main()
 23 {
 24     binary_tree root;
 25     create_binary_tree(&root);
 26     cout<<"preodrer traverse: ";
 27     preorder_traverse(root);
 28     cout<<"\ninodrer traverse: ";
 29     inorder_traverse_two(root);
 30     cout<<"\npostodrer traverse: ";
 31     postorder_traverse(root);
 32     cout<<"\nleverorder traverse: ";
 33     levelorder_traverse(root);
 34     exit(0);
 35 }
 36
 37 void init_binary_tree(binary_tree *root)
 38 {
 39     *root = NULL;
 40 }
 41
 42 void create_binary_tree(binary_tree* root)
 43 {
 44     int elem;
 45     cout<<"Enter the node value(0 is end): ";
 46     cin>>elem;
 47     if(elem == 0)
 48         *root = NULL;
 49     else
 50     {
 51         *root = (binary_tree)malloc(sizeof(binary_tree_node));
 52         if(NULL == root)
 53         {
 54              cout<<"malloc error.\n";
 55              exit(-1);
 56         }
 57         (*root)->elem = elem;
 58         cout<<"Creating the left child node.\n";
 59         create_binary_tree(&((*root)->left));
 60         cout<<"Createing the right child node.\n";
 61         create_binary_tree(&((*root)->right));
 62     }
 63 }
 64
 65 void preorder_traverse(binary_tree root)
 66 {
 67     if(NULL != root)
 68     {
 69         stack<binary_tree_node*> s;
 70         binary_tree_node *ptmpnode;
 71         s.push(root);
 72         while(!s.empty())
 73         {
 74             ptmpnode = s.top();
 75             cout<<ptmpnode->elem<<" ";
 76             s.pop();
 77             if(NULL != ptmpnode->right)
 78                 s.push(ptmpnode->right);
 79             if(NULL != ptmpnode->left)
 80                 s.push(ptmpnode->left);
 81
 82         }
 83     }
 84 }
 85 void inorder_traverse(binary_tree root)
 86 {
 87     if(NULL != root)
 88     {
 89         stack<binary_tree_node*> s;
 90         binary_tree_node *ptmpnode;
 91         s.push(root);
 92         while(!s.empty())
 93         {
 94             ptmpnode = s.top();
 95             while(NULL != ptmpnode)
 96             {
 97                 s.push(ptmpnode->left);
 98                 ptmpnode = s.top();
 99             }
100             s.pop();
101             if(!s.empty())
102             {
103                 ptmpnode = s.top();
104                 cout<<ptmpnode->elem<<" ";
105                 s.pop();
106                 s.push(ptmpnode->right);
107             }
108         }
109     }
110 }
111
112 void inorder_traverse_two(binary_tree root)
113 {
114     if(NULL != root)
115     {
116         stack<binary_tree_node*> s;
117         binary_tree_node *ptmpnode;
118         ptmpnode = root;
119         while(NULL != ptmpnode || !s.empty())
120         {
121             //将左子树结点入栈
122             if(NULL != ptmpnode)
123             {
124                 s.push(ptmpnode);
125                 ptmpnode = ptmpnode->left;
126             }
127             else
128             {
129                 //出栈遍历
130                 ptmpnode = s.top();
131                 s.pop();
132                 cout<<ptmpnode->elem<<" ";
133                 //右子树结点
134                 ptmpnode = ptmpnode->right;
135             }
136         }
137     }
138 }
139
140 void postorder_traverse(binary_tree root)
141 {
142     if(NULL != root)
143     {
144         stack<binary_tree_node*> s;
145         binary_tree_node *ptmpnode;
146         int flags[100];
147         ptmpnode = root;
148         while(NULL != ptmpnode || !s.empty())
149         {
150             //将结点左子树结点入栈
151             while(NULL != ptmpnode)
152             {
153                 s.push(ptmpnode);
154                 flags[s.size()] = 0;   //标记未访问
155                 ptmpnode=ptmpnode->left;
156             }
157             //输出访问的结点
158             while(!s.empty() && flags[s.size()] == 1)
159             {
160                 ptmpnode = s.top();
161                 s.pop();
162                 cout<<ptmpnode->elem<<" ";
163             }
164             //从右子树开始遍历
165             if(!s.empty())
166             {
167                 ptmpnode = s.top();
168                 flags[s.size()] = 1;  //登记访问了
169                 ptmpnode = ptmpnode->right;
170             }
171             else
172                 break;
173         }
174     }
175 }
176 void levelorder_traverse(binary_tree root)
177 {
178     if(NULL != root)
179     {
180         queue<binary_tree_node*> q;
181         binary_tree_node *ptmpnode;
182         q.push(root);
183         while(!q.empty())
184         {
185             ptmpnode = q.front();
186             q.pop();
187             cout<<ptmpnode->elem<<" ";
188             if(NULL != ptmpnode->left)
189                 q.push(ptmpnode->left);
190             if(NULL != ptmpnode->right)
191                 q.push(ptmpnode->right);
192         }
193     }
194 }

程序测试结果如下:

时间: 2024-10-19 10:30:32

算法导论------------基本数据结构之二叉树的相关文章

【算法导论学习-24】二叉树专题2:二叉搜索树(Binary Search Tree,BST)

一.   二叉搜索树(Binary SearchTree,BST) 对应<算法导论>第12章.相比一般二叉树,BST满足唯一的条件:任意节点的key>左孩子的key,同时<右孩子的key. 1.     节点类: public class BinarySearchTreesNode<T> { private int key; private T satelliteData; private BinarySearchTreesNode<T> parent, l

【算法导论学习-26】 二叉树专题4:红黑树、AVL树、B-Tree

1.   红黑树(Red-Black Trees) 参考<算法导论>P308页,红黑树是一种对树的高度要求最灵活的准平衡二叉搜索树.五大属性: 1: Every node is either RED or BLACK. 2: The root is black. 3: Every leaf(NIL) is black.  (The NIL is the sentinel.) 4: If a node is RED, then both its children areblack. 5: For

【算法导论学习-25】 二叉树专题3:Treaps

参考1:算法导论333页 一.Treaps介绍 参考2: http://www.cnblogs.com/huangxincheng/archive/2012/07/30/2614484.html 1.   为什么要用Treaps 1) Treap简明易懂.Treap只有两种调整方式,左旋和右旋.而且即使没有严密的数学证明和分析,Treap的构造方法啊,平衡原理也是不难理解的.只要能够理解 BST和堆的思想,理解Treap当然不在话下. 2) Treap易于编写.Treap只需维护一个满足堆序的修

【算法导论学习-30】 二叉树专题5:二叉树类型的判断

一.完全二叉树的判断 参考:http://blog.csdn.net/lilypp/article/details/6158699/ [分析]根节点开始进行层次遍历,节点入队列,如果队列不为空,循环.遇到第一个没有左儿子或者右儿子的节点,设置标志位,如果之后再遇到有左/右儿子的节点,那么这不是一颗完全二叉树. /*使用LinkedList实现队列,入队使用queue.offer(),出队使用queue.poll()*/ Queue<BinaryTreeNode<T>> queue=

基本数据结构(算法导论)与python

原文链接 Stack, Queue Stack是后进先出, LIFO, 队列为先进先出, FIFO在Python中两者, 都可以简单的用list实现,进, 用append()出, Stack用pop(), Queue用pop(0), pop的时候注意判断len(l) 对于优先队列, 要用到前面讲到的堆 链表和多重数组 这些数据结构在python中就没有存在的价值, 用list都能轻松实现 散列表 为了满足实时查询的需求而产生的数据结构, 查询复杂度的期望是O(1), 最差为O(n)问题描述, 对

【算法与数据结构】二叉树 中序线索

中序线索二叉树 /************************************************************************ 线索二叉树 二叉树的节点有五部分构造 ----------------------------------------- | lChild | lTag | value | rTag | rChild | ----------------------------------------- lChild = (lTag == 0 ? 左

【算法与数据结构】二叉树的 中序 遍历

前一篇写了二叉树的先序遍历,本篇记录一下二叉树的中序遍历,主要是非递归形式的中序遍历. 由于距离上篇有好几天了,所以这里把二叉树的创建和存储结构也重复的写了一遍. 二叉树如下 二叉树的存储方式依然是二叉链表方式,其结构如下 typedef struct _tagBinTree { unsigned char value; struct _tagBinTree* left; struct _tagBinTree* right; }BinTree, *PBinTree; 先序递归形式的创建二叉树代码

算法导论读书笔记-第十四章-数据结构的扩张

算法导论第14章 数据结构的扩张 一些工程应用需要的只是标准数据结构, 但也有许多其他的应用需要对现有数据结构进行少许的创新和改造, 但是只在很少情况下需要创造出全新类型的数据结构, 更经常的是通过存储额外信息的方法来扩张一种标准的数据结构, 然后对这种数据结构编写新的操作来支持所需要的应用. 但是对数据结构的扩张并不总是简单直接的, 因为新的信息必须要能被该数据结构上的常规操作更新和维护. 14.1 动态顺序统计 顺序统计树(order-static tree) : 在红黑树的基础上, 在每个

python环境下使用mysql数据及数据结构和二叉树算法(图)

python环境下使用mysql数据及数据结构和二叉树算法(图):1 python环境下使用mysql2使用的是 pymysql库3 开始-->创建connection-->获取cursor-->操作-->关闭cursor->关闭connection->结束45 代码框架6 import pymysql.cursors7 ###连接数据库8 connection = pymysql.connect(host='127.0.0.1',port=3306,user='roo