BZOJ 2039 人员雇佣(最小割)

最小割的建图模式一般是,先算出总收益,然后再通过网络模型进行割边减去部分权值。

然后我们需要思考什么才能带来收益,什么才能有权值冲突。

s连向选的点,t连向不选的点,那么收益的减少量应该就是将s集和t集分开的割边集。

下面说这道题的建图:

点:

  每个人一个点,额外设源汇点。

边:

  源向人连这个人能造成的全部收益(当作雇佣所有人,然后此人造成的收益)

  人与人之间连两人熟悉度*2,呃,题意问题。

  人向汇连雇佣需要花的钱。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-8
# define MOD 1000000007
# define INF (LL)1<<60
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int x=0,f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
const int N=1005;
//Code begin...

struct Edge{int p, next; LL w;}edge[N*N*5];
int head[N], cnt=2, s, t, vis[N];
queue<int>Q;
LL ss[N];

void add_edge(int u, int v, LL w){
    edge[cnt].p=v; edge[cnt].w=w; edge[cnt].next=head[u]; head[u]=cnt++;
    edge[cnt].p=u; edge[cnt].w=0; edge[cnt].next=head[v]; head[v]=cnt++;
}
int bfs(){
    int i, v;
    mem(vis,-1); vis[s]=0; Q.push(s);
    while (!Q.empty()) {
        v=Q.front(); Q.pop();
        for (int i=head[v]; i; i=edge[i].next) {
            if (edge[i].w>0&&vis[edge[i].p]==-1) vis[edge[i].p]=vis[v]+1, Q.push(edge[i].p);
        }
    }
    return vis[t]!=-1;
}
LL dfs(int x, LL low){
    int i;
    LL a, temp=low;
    if (x==t) return low;
    for (int i=head[x]; i; i=edge[i].next) {
        if (edge[i].w>0&&vis[edge[i].p]==vis[x]+1) {
            a=dfs(edge[i].p,min(edge[i].w,temp));
            temp-=a; edge[i].w-=a; edge[i^1].w+=a;
            if (temp==0) break;
        }
    }
    if (temp==low) vis[x]=-1;
    return low-temp;
}
LL dinic(){
    LL sum=0;
    while (bfs()) sum+=dfs(s,INF);
    return sum;
}
int main ()
{
    int n;
    LL ans=0, x;
    scanf("%d",&n); s=0; t=n+1;
    FOR(i,1,n) scanf("%lld",&x), add_edge(i,t,x);
    FOR(i,1,n) FOR(j,1,n) {
        scanf("%lld",&x); ss[i]+=x;
        if (i==j||!x) continue;
        add_edge(i,j,x*2);
    }
    FOR(i,1,n) add_edge(s,i,ss[i]), ans+=ss[i];
    LL res=dinic();
    printf("%lld\n",ans-res);
    return 0;
}

时间: 2024-10-01 10:16:18

BZOJ 2039 人员雇佣(最小割)的相关文章

BZOJ 2039 2009国家集训队 employ人员雇佣 最小割

题目大意:给定n个人,每个人有一个佣金,i和j如果同时被雇佣会产生2*E(i,j)的效益,i和j如果一个被雇佣一个不被雇佣会产生E(i,j)的亏损,求最大收益 首先对于每一个cost[i],从点i出发向汇点连一条流量为cost[i]的边 对于每一对点(i,j),建图如下: 从S向点i和点j各连一条流量为E(i,j)的边 i和j之间连一条流量为2*E(i,j)的双向边 这样可以保证每种割法对应一种雇佣方案 用矩阵上数字的总和减掉最小割即是答案 边集会很大,因此合并后再加即可 #include <c

【BZOJ2039】【2009国家集训队】人员雇佣 [最小割]

人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MB[Submit][Status][Discuss] Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献指数,(我们用Ei,j表示i经理对j经理的了解程度),即当经理i和经理j同时被雇佣时,经理i会对经理j做出贡献,使得所赚得的利润增加Ei,j.当然,雇佣每一个经理都需要花费一定的金钱Ai,对于一些经理可能他做出的贡献不值得

【BZOJ2039】【2009国家集训队】employ人员雇佣 最小割

转载请注明出处:http://blog.csdn.net/vmurder/article/details/42651751 其实我就是觉得原创的访问量比未授权盗版多有点不爽233... 最小割心得: 首先需要一定的功底来发现这道题是最小割,并且投入思考. 然后想怎么建图: 最小割都是先算上所有收益,然后再通过网络图进行割边减去部分权值. 收益有时候可能带上负值. 然后我们需要思考什么能带来权值,什么会有权值冲突. 而最小割图一般都是拆成S集和T集考虑,即取与不取,某人/点选A或者选B等等, 这样

bzoj 1497 最大获利 - 最小割

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究.站址勘测.最优化等项目.在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公司调查得出了所有期望中的

[BZOJ 2127] happiness 【最小割】

题目链接:BZOJ - 2127 题目分析 首先,每个人要么学文科,要么学理科,所以可以想到是一个最小割模型. 我们就确定一个人如果和 S 相连就是学文,如果和 T 相连就是学理. 那么我们再来确定建图.首先使用最小割,就是先加上所有可能获得的权值,再减去最小割(即不能获得的权值). 如果一个人学理,就要割掉与 S 相连的边,那么就是要割掉学文的收益.于是,对于每个点,从 S 向它连边,权值为它学文的收益. 同理,对于每个点,从它向 T 连边,权值为它学理的收益. 对于两个相邻的人,他们有同时学

BZOJ 2561 最小生成树 | 网络流 最小割

链接 BZOJ 2561 题解 用Kruskal算法的思路来考虑,边(u, v, L)可能出现在最小生成树上,就是说对于所有边权小于L的边,u和v不能连通,即求最小割: 对于最大生成树的情况也一样.容易看出两个子问题是各自独立的,把两个最小割相加即可. #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include <queue> using

bzoj 1797: [Ahoi2009]Mincut 最小割

求最小割的可行边与必须边,先求一遍最大流,然后在残量网络上求强连通分量,对于可行边 起始点与结束点要在不同的强连通分量里,对于必须边 起始点要与S在一个SCC里 结束点要与T在一个SCC里. 1 #include<cstdio> 2 #include<iostream> 3 #include<cstring> 4 #include<cstdlib> 5 #include<cmath> 6 #include<queue> 7 #incl

bzoj 4439: [Swerc2015]Landscaping -- 最小割

4439: [Swerc2015]Landscaping Time Limit: 2 Sec  Memory Limit: 512 MB Description FJ有一块N*M的矩形田地,有两种地形高地(用‘#’表示)和低地(用‘.’表示) FJ需要对每一行田地从左到右完整开收割机走到头,再对每一列从上到下完整走到头,如下图所示 对于一个4*4的田地,FJ需要走8次. 收割机是要油的,每次从高地到低地或从低地到高地需要支付A的费用. 但是FJ有黑科技,可以高地与低地的互变,都只需要一个支付B的

BZOJ 1391: [Ceoi2008]order [最小割]

1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Status][Discuss] Description 有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成. 现在给出这些参数,求最大利润 Input 第一行给出 N,M(1<=N<=1200,1<=M<=12